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Abstract 13 

 14 

Multiple satellite and ground-based observations provide consistent evidence that the 15 

thickness of Earth’s protective ozone layer has stopped declining since 1997, close to the 16 

time of peak stratospheric halogen loading. Regression analyses with Effective Equivalent 17 

Stratospheric Chlorine (EESC) in conjunction with further analyses using more 18 

sophisticated photochemical model calculations constrained by satellite data demonstrate 19 

that the cessation of ozone depletion between 18-25 km altitude is consistent with a 20 

leveling off of stratospheric abundances of chlorine and bromine, due to the Montreal 21 

Protocol and its amendments. However, ozone increases in the lowest part of the 22 

stratosphere, from the tropopause to 18 km, account for about half of the improvement in 23 

total column ozone during the past 9 years at northern hemisphere mid-latitudes. The 24 

increase in ozone for altitudes below 18 km is most likely driven by changes in transport, 25 

rather than driven by declining chlorine and bromine.  Even with this evidence that the 26 

Montreal Protocol and its amendments are having the desired, positive effect on ozone 27 

above 18 km, total column ozone is recovering faster than expected due to the apparent 28 

transport driven changes at lower altitudes. Accurate prediction of future levels of 29 

stratospheric ozone will require comprehensive understanding of the factors that drive 30 

temporal changes at various altitudes, and partitioning of the recent transport-driven 31 

increases between natural variability and changes in atmospheric structure perhaps 32 

related to anthropogenic climate change. 33 
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1. Introduction 1 

Atmospheric ozone, which protects life on Earth’s surface from damaging solar ultraviolet 2 

radiation, exists mostly (~90% of the total column) in the stratosphere. The decrease in 3 

stratospheric ozone and the character of its expected recovery have been the subject of intense 4 

research [WMO, 2003]. Recently reported evidence for the first stage of recovery (i.e., a 5 

slowdown in the ozone depletion rate) in the upper stratosphere at 35-45 km [Newchurch et al., 6 

2003b; Reinsel et al., 2002] has confirmed our understanding of ozone chemistry and the positive 7 

effect of the Montreal Protocol and its amendments, which have led to a decline in stratospheric 8 

halogen (chlorine and bromine) loading. However, the largest fraction of the ozone column 9 

resides in the lower stratosphere, between approximately 10 and 25 km altitude [WMO, 1999]. 10 

The abundance of ozone in the lower stratosphere is the essential metric for confirming the health 11 

of the ozone layer.  12 

Stratospheric ozone is continually produced by photolysis of molecular oxygen and is 13 

removed locally by both transport and chemical processes. In the upper stratosphere, transport 14 

plays a minor role and there is a direct, almost linear anti-correlation between the abundances of 15 

ozone and chlorine [e.g., figure 6-21, WMO, 1999]. The majority of stratospheric chlorine is 16 

supplied by industrial pollutants, such as CFCs (chlorofluorocarbons). Ozone in the lower 17 

stratosphere is sensitive to re-distribution by atmospheric transport, the abundance of volcanic 18 

aerosols, and a complex set of non-linear chemical interactions involving anthropogenic chlorine 19 

and bromine [chapter 7, WMO, 1999; chapter 4, WMO, 2003]. A number of recent studies, based 20 

on examination of time series of total column ozone, have noted a turnaround in the recent 21 

downward trend [Reinsel et al., 2005; Steinbrecht et al., 2005; Hadjinicolaou et al., 2005] that 22 

may be evidence for the beginning of an ozone recovery due to declining halogen loading 23 

[Reinsel et al., 2005].  However, Hadjinicolaou et al. [2005] attribute the recent turnaround in total 24 

column ozone to effects of transport. Here, we examine changes in total column ozone as well as 25 

partial ozone columns, in specific altitude regions, to better ascertain effects of halogen chemistry 26 

(i.e., chlorine and bromine) and transport forcings on recent changes in stratospheric ozone. Our 27 

focus is on changes in ozone that have occurred outside the polar regions; our analyses are 28 
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restricted to regions equatorward of 60o latitude. The long-term evolution of polar ozone is 1 

sensitive to changes in stratospheric temperature that may be linked to climate change, as well 2 

as evolving levels of chlorine and bromine, and is the subject of many other studies [Austin et al., 3 

2002; Austin, 2003; Huck et al., 2005; Newman et al., 2004; Rex et al., 2004; Shindell et al., 4 

1998; Solomon et al., 2005; Yang et al., 2005]. However, the influence of polar ozone loss on the 5 

extra-polar ozone time series [Reinsel et al., 2005; Weatherhead and Andersen, 2005] is 6 

considered in this study. 7 

Recently, the International Ozone Commission http://ioc.atmos.uiuc.edu/documents/ 8 

Statement-QOS2004.pdf defined the first stage of ozone recovery as a ‘statistically significant 9 

slowing of the downward trend’. Our study focuses on empirical evidence for this first stage of 10 

ozone recovery that is evident from several independent measurement systems and networks 11 

covering large portions of the global atmosphere during the past 25 years. These independent 12 

observing techniques show a consistent slowdown in the loss rates in total ozone columns, 13 

stratospheric ozone columns, and ozone columns between 18-25 km (near the ozone-layer 14 

maximum). Our study focuses on the attribution of changes in ozone at mid-latitudes by 15 

examining the role of chemistry and transport forcings on observed changes in partial column 16 

ozone, for layers between 18-25 km and the tropopause to 18 km. The significance of these 17 

changes is quantified by a cumulative sum of residuals analysis [Newchurch et al., 2003b; 18 

Reinsel, 2002]. A photochemical model, constrained by satellite observations of tracers of 19 

atmospheric transport, volcanic aerosol loading, and numerous other chemical measurements, is 20 

also used to quantify the expected increases in ozone due to declining levels of stratospheric 21 

chlorine and bromine that have resulted from the Montreal Protocol and its amendments. 22 

 23 

2. Data 24 

The most comprehensive representation of changes in the global stratospheric ozone 25 

layer is based on the consistent results of three independent satellite instruments and two 26 

independent ground-based observing networks. We analyze the TOMS/SBUV satellite 27 

measurements to characterize total-column ozone changes from 60oS to 60oN latitudes. From the 28 
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well-calibrated ground-based networks, we use 36 Dobson/Brewer stations between 30oS-60oN 1 

to corroborate the satellite total-column ozone results. We use both SAGE and HALOE satellite 2 

measurements to characterize the global stratosphere above 18 km, between 60oS and 60oN. 3 

These ozone data are area-weighted to compute near-global mean values. Because most of the 4 

total-column ozone amount resides in the stratosphere and because the global mixing time is 5 

significantly less than the decadal time frame important here, we expect to see broadly consistent 6 

recovery signatures from all of these independent measurements. 7 

The Stratospheric Aerosol and Gas Experiment I and II (SAGE I/II) instruments comprise 8 

the longest (1979 to August 22, 2005, but with a discontinuity between November, 1981 and 9 

October, 1984) and most widely analyzed source of global stratospheric ozone measurements 10 

[Cunnold et al., 2000; Newchurch et al., 2000; WMO, 2003]. The complete version-6.2 data set 11 

and details of the retrieval algorithm are available through http://www-sage2.larc.nasa.gov.  12 

The version-19 Halogen Occultation Experiment (HALOE) data for 1991 to November 21, 13 

2005 comprise a shorter, but equally accurate record of stratospheric ozone amounts, in addition 14 

to measurements of other trace gases critical to partitioning the chemical and dynamical causes 15 

of the improving ozone layer [Russell III et al., 1993]. The HALOE data are available at 16 

http://haloedata.larc.nasa.gov. Both SAGE and HALOE measurements have been extensively 17 

validated [Ackerman et al., 1989; Attmannspacher et al., 1989; Cunnold et al., 1989; Cunnold et 18 

al., 1996; Gordley et al., 1996; Hervig et al., 1996; Newchurch et al., 1995; Oberbeck et al., 1989; 19 

Russell III et al., 1996a,b; Wang et al., 2002] and are widely accepted by the atmospheric 20 

community for studies of ozone trends [Harris et al., 1998; WMO, 1994; WMO, 2003]. 21 

We also analyze global total ozone data from the merged Total Ozone Mapping 22 

Spectrometer (TOMS)/SBUV data (Merged Ozone Data, herein after referred to as the MOD), 23 

which provide nearly continuous global coverage since 1979 [McPeters et al., 1996; McPeters 24 

and Labow, 1996; Reinsel et al., 1994; Stolarski et al., 1991] (details at 25 

http://code916.gsfc.nasa.gov/Data_services/merged/). Total ozone measurements observed from 26 

the ground-based Dobson [Dobson, 1931; Dobson, 1968; Dobson and Harrison, 1926; Dobson et 27 

al., 1928; Komhyr et al., 1989; Lloyd et al., 1999; Newchurch et al., 2000; Staehelin et al., 1998; 28 
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Staehelin et al., 1995; WMO, 2003] and Brewer [Bais et al., 1996; Hoegger et al., 1992; Kerr et 1 

al., 1988; Lloyd et al., 1999; McElroy and Kerr, 1995; Slusser et al., 1999; Staehelin et al., 1995] 2 

spectrophotometers are obtained from the World Ozone and Ultraviolet Radiation Data Centre 3 

(WOUDC) (http://www.msc-smc.ec.gc.ca/woudc). These data are mostly selected based on table 4 

4-4 of WMO [1999]: 26 Dobson/Brewer stations between 30-60oN (Kagoshima, Quetta, Sapporo, 5 

Tateno, Bismarck, Caribou, Edmonton, Arosa, Camborne, Haute Provence, Potsdam, Uccle, 6 

Vigna Di Valle, Toronto, Boulder, Belsk, Goose Bay, Churchill, Lisbon, Hradec Kralove, 7 

Hohenpeissenberg, Nashville, Wallops Island, Cairo, Sestola, and Xianghe) and 10 8 

Dobson/Brewer stations between 30oS-30oN (Kodaikanal, New Delhi, Mauna Loa, Varanasi, 9 

Naha, Samoa, Cachoeira Paulista, Kunming, Singapore, and Natal). The selected data follow the 10 

corrections recommended by WMO [1999, section 4.2]. Balloon-borne ozonesonde 11 

measurements [Newchurch et al., 2003a, Oltmans et al., 1998; Oltmans et al., 1996] from 11 12 

stations between 30-60oN (Kagoshima, Sapporo, Tateno, Edmonton, Uccle, Boulder, Goose Bay, 13 

Churchill, Hohenpeissenberg, Wallops Island, and Payerne), obtained from the WOUDC, are 14 

used to derive reliable long-term trends of ozone from the surface to 27 km [page 4.14, WMO, 15 

1999]. Ozone columns are calculated both in the lower stratosphere between the tropopause and 16 

18 km (TP-18 km) and in the middle stratosphere (18-25 km near the maximum layer in ozone 17 

concentration).  18 

 19 

3. Statistical model 20 

We employ a stepwise linear regression model to remove solar and Quasi Biennial 21 

Oscillation (QBO)-related signals from the ozone time series [Newchurch et al., 2000; Newchurch 22 

et al., 2003b]. Variations in solar ultraviolet radiation due to the 11-year cycle of solar sunspots, 23 

and changes in the direction of stratospheric winds in the tropics that vary on a roughly 2.5-year 24 

period, are known to affect measured time series of stratospheric and total column ozone. 25 

Because our emphasis is on the identification of variations in ozone due to changes in halogen 26 

loading, a statistical model is used to account for, and remove, the effects of these processes on 27 

the measured time series. Seasonal effects and the mean abundance of ozone over the time 28 
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period are also removed, providing a residual time series that is examined for evidence of ozone-1 

layer recovery. 2 

The linear regression model is well accepted by the atmospheric sciences community 3 

[Harris et al., 1998] and is represented by  4 

 5 

[O3]t = μ + ωt + [Seasonal terms] + [QBO periodic terms] + γ [F10.7]t + Ut  (1) 6 

 7 

where μ is the mean level, ω is a linear trend coefficient, and the seasonal terms represent the 8 

12-, 6-, 4-, and/or 3-months cosine terms each with a time lag to obtain the best estimate of its 9 

coefficient. The QBO periodic terms consist of an ensemble of cosines with time lags to represent 10 

the QBO signal with periods between 3 and 30 months excluding 12-, 6-, 4-, and/or 3-months 11 

terms, which are included in the seasonal coefficients. [F10.7]t is the F10.7-cm radio flux density, 12 

which is used to provide a proxy for variations in solar UV irradiance. γ is a solar signal 13 

regression coefficient. Ut is the autocorrelated error term, representing a first-order 14 

autoregressive process (Ut = a1Ut-1 + εt).  15 

Based on surface measurements of ozone depleting substances and the time lag (~3 16 

years) involved in their rising to the altitude of the stratospheric ozone layer at mid-latitudes, we 17 

choose the start of 1997 as the time to test for an inflection in the ozone time series [Montzka et 18 

al., 1999; WMO, 2003]. The Effective Equivalent Stratospheric Chlorine (EESC), a combined 19 

measure of lower stratospheric abundances of inorganic chlorine and bromine, peaked in mid-20 

1996 [figure 1-23, WMO, 2003]. The effect of the autoregressive coefficient on the subsequent 21 

uncertainty calculation is described in the appendix. Details of the treatment of exogenous 22 

variables appear in Newchurch et al. [2003b].  23 

An aerosol term is not included in the regression. Highly-elevated aerosol loading 24 

following major volcanic eruptions interferes with the space-borne measurement of lower 25 

stratospheric ozone [Cunnold et al., 2000]. Of course, ozone depletion results from changes in 26 

heterogeneous chemistry associated with enhanced aerosol loading following major volcanic 27 

eruptions [e.g., Dessler et al., 1993; Fahey et al., 1993; Wennberg et al., 1994; Kinnison et al., 28 
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1994]. Changes in stratospheric heating associated with volcanic aerosols lead to additional 1 

short-term variations in ozone [e.g., Kinne et al., 1992; Kinnison et al., 1994; Robock, 2000]. We 2 

have omitted data collected up to 30 months following the eruption of Mt. Pinatubo from the 3 

SAGE and HALOE time series due to the aerosol influence on space-based ozone [Cunnold et 4 

al., 2000] and also because our analysis is focused on long term changes in ozone for 5 

stratospheric aerosol conditions close to background. We also omit the merged TOMS/SBUV 6 

data, Dobson/Brewer total ozone, and ozonesonde ozone records for 1991.5-1994.0 to be 7 

consistent with the statistical treatment of the SAGE and HALOE satellite records and because 8 

our study is focused on near background aerosol conditions. The omission of data for time 9 

periods perturbed by enhanced volcanic aerosols is a common practice in regression based 10 

analyses of ozone time series: e.g., Reinsel et al. [2005] omit data influenced by Pinatubo, as 11 

explained in paragraph 10 of their paper. Here, we show data collected during the Pinatubo time 12 

period, plotted as open circles, but we do not include these data in our statistical analyses. 13 

 14 

4. Photochemical Model 15 

 The attribution of changes in ozone is based independently on EESC regression and on 16 

more sophisticated photochemical model calculations constrained by observations of tracers of 17 

dynamical motion and stratospheric aerosol. The EESC time series is based on measurements of 18 

tropospheric total organic chlorine (CCly) and bromine (CBry). It is lagged relative to the surface 19 

by three years [pages 1.32 and 11.15, WMO, 1999 and page 1.19, WMO, 2003]. The efficiency of 20 

ozone loss due to bromine relative to chlorine, which is based on photochemical model 21 

simulations, is used to arrive at a single time series to represent the aggregate effect of halogens 22 

on ozone [alpha factor, page 1.69, WMO, 2003]. 23 

 Many studies which have focused on attribution of ozone changes have used EESC to 24 

represent the effects of halogens on ozone [e.g., Newman et al., 2004; Huck et al., 2005; Yang et 25 

al., 2005]. However, EESC is a simplistic representation of the influence of chlorine and bromine 26 

on ozone. Not all stratospheric air is three years old, as assumed in the formulation of EESC.  27 

Also, the relative influence of chlorine and bromine on ozone loss varies as a function of altitude, 28 
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latitude, season, and aerosol loading. The formulation of EESC assumes a single relative-1 

influence factor that has the same value at all latitudes and altitudes. However, the contribution of 2 

halogens to ozone loss varies as a function of aerosol loading  [e.g., Dessler et al., 1993; Fahey 3 

et al., 1993; Kinnison et al., 1994] and as a function of the abundance of HOx (hydrogen oxide) 4 

and NOx (nitrogen oxide) radicals. In turn, HOx and NOx variations are also driven by changes in 5 

H2O, CH4, and temperature [e.g., Salawitch et al., 1994; Wennberg et al., 1994]. Also, bromine 6 

has a larger relative influence on ozone loss near the tropopause than at higher altitudes [e.g., 7 

Salawitch et al., 2005].  8 

 We have used a photochemical model, constrained by satellite measurements of water 9 

vapor (H2O), ozone (O3), methane (CH4), and sulfate aerosols, to compute 24-hour-average 10 

radical abundances (e.g., ClO, BrO, OH, HO2, NO, and NO2) for all altitudes, latitudes, and time 11 

periods under consideration. The fractional contribution of halogens to total ozone loss found 12 

from these calculated radical fields, termed LOSSMODEL, is also used as a regression variable in 13 

the analysis discussed in Section 5. The quantity LOSSMODEL, described more fully below, can be 14 

thought of as a more sophisticated version of EESC. 15 

 Here, we describe the procedure used to estimate LOSSMODEL. We estimate the fraction 16 

of ozone loss due to halogens for each month of the ozone time series, at 1-km intervals between 17 

18 and 25 km, for latitudes of 55oN, 45oN, 35oN, 5oN, 5oS, 35oS, 45oS and 55oS. The model is 18 

constrained by zonal, monthly mean values of  H2O, CH4, and O3, all observed by HALOE 19 

[Russell III et al., 1993]. Prior to the launch of HALOE, SAGE II measurements of O3 are used. 20 

Aerosol surface area is obtained from SAGE I and SAGE II observations [Thomason and Poole, 21 

1997]. First, N2O is calculated from HALOE zonal, monthly mean CH4 using the formula of 22 

Michelsen et al. [1998]. Different relations are used for tropical and mid-latitude regions. The 23 

shapes of these relations are related to the relative lifetime of each species in the tropics and 24 

mid-latitude regions, respectively. The ATMOS relations that covered several weeks of 25 

observations at many latitudes have been shown to agree well with in situ [e.g., Herman et al., 26 

1998] and aircraft [e.g., Chang et al., 1996a] observations of these relations, obtained at other 27 

time periods. We allowed for growth in N2O over time of 0.315% per year, relative to 1994.875 28 
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(the time of the Michelsen et al. [1998] ATMOS observations), which is obtained from data in 1 

table 1-12 of WMO [1999]. We allowed for growth of CH4 of 5.0 ppbv/year from 1979 until 2000 2 

and of 2 ppbv/year from 2000 onward, again relative to 1994.875. These values are obtained 3 

from section 1.7.2 of WMO [2003]. These small growth rates were implemented so that the 4 

formula of Michelsen et al. [1998] could be incorporated more realistically into the model, which is 5 

driven ultimately by HALOE CH4: e.g., prior to input to the Michelsen et al. formula, HALOE CH4 6 

was converted to its equivalent value for 1994.875; a value of N2O was found using the 7 

appropriate relation, based on latitude zone; then, the computed value of N2O was scaled to the 8 

time of the actual CH4 observation. The growth rates for N2O and CH4 are a minor part of the 9 

overall analysis and have no bearing on the final results. 10 

 Inorganic chlorine (Cly) is estimated based on the formulation derived from aircraft 11 

measurements of organic chlorine compounds that is described by Woodbridge et al. [1995]. As 12 

noted above, N2O is estimated from HALOE CH4, using the formula from Michelsen et al. [1998], 13 

allowing for the small temporal growth in both N2O and CH4 described above. For the estimate of 14 

Cly, the following relation with N2O was used: 15 

 [Cly] = 3.53876 – 2.57709×10−3 [N2O] − 1.91693×10−5 [N2O]2 − 2.40584×10−8 [N2O]3    (2) 16 

where [Cly] and [N2O] are in ppbv. This relation is based on in situ measurements of a complete 17 

set of halocarbons obtained during the SOLVE campaign [Schauffler et al., 2003]. All other 18 

aspects of the computation of Cly are based on the method described by Woodbridge et al. 19 

[1995], which allows for Cly to be computed for earlier time periods by adjusting the value of total 20 

chlorine in the troposphere [equation 11 of Woodbridge et al., 1995]. 21 

 Inorganic bromine (Bry) is estimated based on a relation derived from aircraft 22 

measurements of the bromocarbon source gases and nitrous oxide (N2O) [Wamsley et al., 1998]. 23 

For the estimate of Bry, a correlation with CFC-11 is used, because the primary bromine source 24 

gas, CH3Br, has a stratospheric lifetime somewhat similar to lifetime of CFC-11 [e.g., plate 1 of 25 

Wamsley et al., 1998). Equations 15 and 16 of Wamsley et al. [1998] are used to estimate CFC-26 

11 from N2O, based on whether data was obtained in the tropics of extratropics, respectively. 27 
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 We allow for variations in the age of air in the calculation of Cly and Bry, as outlined by 1 

Woodbridge et al. [1995] and Wamsley et al. [1998], using the relation between age and N2O 2 

given in figure 2.12 of Park et al. [1999]. This relation between age of air and N2O is very similar 3 

to an independent determination reported by Engel et al. [2002]. Finally, the temporal evolution of 4 

CCly and CBry, which appear as factors in the formula for Cly and Bry [e.g., Woodbridge et al., 5 

1995; Wamsley et al., 1998], is based on the WMO 2003 Ab baseline scenario [e.g., table 1-16, 6 

WMO, 2003]. This method for estimating Cly and Bry from tracers has been used in many 7 

empirical studies of balloon and aircraft data [e.g., Chang et al., 1996a; Salawitch et al., 1994; 8 

Salawitch et al., 2005 and references therein] and is a common tool for estimating time series of 9 

halogens [e.g., Engel et al., 2002].  10 

 A second set of calculations was conducted for the tropical region. The use of HALOE 11 

CH4 to prescribe model Cly and NOy for 18 to 25 km in the tropics is a challenge, because 12 

measured CH4 lies close to its tropopause value. Hence, small uncertainties in measured CH4 13 

can lead to large relative errors in estimated Cly and NOy. For this second set of calculations, 14 

model HCl and NOx was constrained to match the zonal, monthly mean HALOE observations of 15 

these quantities by adjusted model Cly and NOy to match the data. Both sunrise and sunset 16 

observations were used, with the model matching the appropriate time of observation. Model Bry 17 

was scaled to preserve the Cly to Bry ratio for the particular time of observation. Monthly mean 18 

values of Cly, Bry, and NOy, normalized to year 1993.0, were computed for each latitude region 19 

over the UARS time period. These monthly mean values were propagated backwards in time to 20 

cover the time period between 1979 and the first data from HALOE, using the known temporal 21 

changes in organic chlorine, organic bromine, and N2O (e.g., WMO 2002 Ab scenario for CCly 22 

and CBry, augmented by constant values of CH2Br2 and CH2BrCl for Bry; NOy growth of 0.315% 23 

per year, based on the N2O growth described above).  24 

 Estimates of NOy are based on its relation with N2O. For values of N2O < 150 ppb, we 25 

use the formula of Rinsland et al. [1999]. For N2O > 150 ppb, the relation of Popp et al. [2001] is 26 

used. The Rinsland et al. [1999] relation is based on measurements from ATMOS; the Popp et al. 27 

[2001] relation is based on data from aircraft and balloons. The relation between NOy and N2O is 28 
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robust, displaying small variations outside the polar regions [e.g., Sen et al., 1998; Keim et al., 1 

1997]. Indeed, various coupled climate and chemistry models, as well as 2D and 3D models, 2 

display much larger variations in the NOy vs N2O relation (compared to either other models, or to 3 

data) than is commonly seen in measurements from different instruments [e.g., Chang et al., 4 

1996b; Park et al., 1999].  The good agreement between measured and modeled NOx, illustrated 5 

in Figure 1, again provides confidence in the fidelity of this approach. As for HCl, excellent 6 

agreement is found for altitudes above 19 km. At 19 km and lower altitudes, small measurement 7 

uncertainties in CH4 have a large affect on the model results, because the tracer-tracer relations 8 

are approaching tropopause values that lie close to zero. Similar comparisons between measured 9 

and modeled NOx are found for other latitudes (not shown). 10 

 The model is constrained by observations of CH4 and H2O, which are important for 11 

calculating HOx radicals. For the UARS time period, zonal, monthly mean observations from 12 

HALOE are used. For the pre-UARS time period, we propagated back in time the monthly mean 13 

value of H2O, for the specific latitude and altitude point, derived from HALOE measurements and 14 

assuming zero trend for H2O. A similar treatment is used for CH4, except we allow for the small 15 

temporal trend noted above. In other words, for all Januaries prior to the launch of UARS, the 16 

same value of H2O is used for the model grid point in question (function of altitude and latitude), 17 

which is derived from a mean of all model grid points (at the same altitude and latitude) for times 18 

when data are available. The trends in H2O are uncertain, particularly prior to the launch of UARS 19 

[SPARC, 2000]. However, the scientific results of this paper, the attribution of changes in ozone 20 

to the leveling off of Cly and Bry, are insensitive to any reasonable assumption regarding dH2O/dt 21 

over the pre-UARS time period. The reason for this insensitivity is that the abundance of HOx 22 

varies in proportion to changes in the square root of the concentration of H2O.  Finally, there are 23 

occasional gaps in monthly, zonal mean HALOE and SAGE II data due to the sampling of the 24 

respective instruments. For these occasions, which are rare in the overall analysis, values of 25 

LOSSMODEL are not computed, and this information is treated is “not available” in the CUSUM 26 

analysis of these model results. 27 



Attribution of recovery in lower-stratospheric ozone 
Yang et al., submitted to JGR 15 June 2005 

Accepted 22 March 2006 

 

 

12

 Figure 1 compares modeled and measured HCl (sunrise and sunset) and NOx (sunset) at 1 

20 and 25 km, for three latitude regions. The good agreement between modeled and measured 2 

HCl and NOx demonstrates the reliability of the approach. A model calculation for the tropics, 3 

based on specification of Cly and NOy from measured CH4, tends to simulate HCl and NOx 4 

reasonably well at 25 km (not shown).  However, this model overestimates both HCl and NOx at 5 

20 km, because the HALOE CH4 time series lies close to tropopause values of CH4, which 6 

introduces uncertainties in estimates of Cly and NOy based on this “tracer-tracer” approach.   7 

Hence, for the tropics, we show here and use in our CUSUM analysis the model calculation 8 

constrained to match HALOE HCl and NOx. The resulting CUSUMs of LOSSMODEL for both of 9 

these calculations in the tropics are remarkably similar, however, as discussed in Section 5. 10 

 Finally, since we are using the formula of Wamsley et al. [1998] to derive Bry, the derived 11 

values are ~2.4 ppt higher than values that would be derived from consideration of supply of 12 

bromine from only CH3Br and halons. Here, we assume CH2Br2 and CH2BrCl are constant over 13 

time. The values of Bry in this model are smaller than values inferred from some measurements 14 

of BrO [e.g., Salawitch et al., 2005], possibly due to an important role for stratospheric supply of 15 

bromine from biogenic bromocarbons. However, the role of biogenic bromocarbons on 16 

stratospheric Bry is a subject of active research [e.g., Salawitch, 2006]: retrievals of BrO from 17 

SCIAMACHY by one group suggest a modest role for this source [Sinnhuber et al., 2005], in line 18 

with the approach used here, whereas retrievals from another group suggest a much larger role 19 

for biogenic bromine [Sioris et al., 2006]. An attempt to model the role of biogenic bromocarbons 20 

is beyond the scope of this paper, although in Section 5 we comment about the possible affect of 21 

these compounds on the attribution of ozone changes in the lowermost stratosphere. 22 

Our approach allows us to calculate how ozone loss by halogens has evolved over time 23 

in response to changes in chlorine, bromine, water, methane, HOx, NOx, and sulfate aerosol 24 

loading as well as variations in atmospheric transport. Changes in transport are reflected in 25 

changes in CH4, which controls the input fields of NOy, Cly, and Bry. This model has been shown 26 

to provide accurate simulations of hydrogen, nitrogen, and chlorine radical species under a 27 

variety of aerosol loading, seasonal, and latitudinal conditions [Osterman et al., 1997; Salawitch, 28 
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2002; Sen et al., 1999; Sen et al., 1998]. Model results are integrated from 18 to 25 km, weighted 1 

by the concentration of ozone at each altitude. Similar results are found if we were to use equal 2 

weights for each altitude (this weighting is almost identical to a non-weighted average because 3 

the ozone contents of each 1-km layer are almost all equal). The resulting time series is referred 4 

to as LossMODEL. Plots of LossMODEL for 7 latitude bands centered between 60oS and 60oN are 5 

shown in Figure 2. The calculated increase in ozone loss by halogens between 1979 and 2005 is 6 

consistent with the overall rise in stratospheric chlorine and bromine loading (top panel, Figure 2). 7 

However, ozone loss by halogens peaked near 1992, which is expected based on known 8 

photochemistry in the presence of highly elevated abundances of stratospheric aerosol following 9 

the eruption of Mt. Pinatubo [Dessler et al., 1993; Fahey et al., 1993]. Figure 2 shows results for 10 

LOSSMODEL in the tropics (10ºS to 10ºN) for the model constrained by measured HCl and NOx, 11 

which is a more accurate empirical approach for this region of the atmosphere, where the tracer-12 

tracer relation approach introduces some uncertainty. Interestingly, however, nearly identical 13 

results for LOSSMODEL are found for the tropics using the tracer-tracer approach. Ozone loss in 14 

the tropics is found from a balance between halogen and HOx photochemistry and decreases in 15 

H2O and CH4 measured by HALOE since ~2002 result in the points for LOSSMODEL, for the past 4 16 

years, lying above the blue curve (EESC fit to LOSSMODEL) by comparable amounts for both 17 

simulations. 18 

 An outstanding scientific issue, which is not addressed in our study, is that even though 19 

the effect of enhanced chemical loss of ozone due to Pinatubo aerosols is readily apparent from 20 

various ozone datasets in the Northern Hemisphere, this same affect is not apparent from 21 

measurements in ozone obtained in the Southern Hemisphere [section 4.6.6, WMO, 2003]. The 22 

reason for this disparity is a subject of active research and is especially puzzling given the large, 23 

Pinatubo induced decline in column NO2 observed at Lauder, New Zealand [e.g., figure 4-21, 24 

WMO, 2003]. We avoid this confounding issue by omitting in our analysis data collected during 25 

times of highly perturbed aerosol loading. 26 

Two time series are used independently for the attribution of ozone loss by halogens: 27 

values of EESC (Figure 2) from WMO [2003] Ab baseline scenario and values of LossMODEL. The 28 
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EESC time series allows observed changes in O3 to be related to well-established variations in 1 

the abundance of stratospheric halogens. The LossMODEL time series is a refinement to the EESC-2 

based estimate, allowing the changes in O3 to be related to the time evolution of ozone loss by 3 

halogens accounting for “age of air” as well as observed changes in CH4, H2O, aerosol loading, 4 

NOx and HOx radicals, in addition to variations in Cly and Bry.  5 

 6 

5. Changes in ozone trends 7 

 The three left panels in Figure 3 show the residual ozone time series from SAGE and 8 

HALOE (top), Dobson/Brewer spectrophotometers (middle), and the merged TOMS/SBUV 9 

satellite instruments (bottom) that remain after the mean, seasonal, QBO, and solar terms have 10 

been removed, as described in Equation (1). The excellent agreement between the SAGE and 11 

HALOE measurements of the temporal evolution of stratospheric ozone is apparent in the top left 12 

panel. Likewise, the linear trends from 1979.0 to the end of 1996 (=1997.0) from SAGE (−2.3 ± 13 

0.2 %/decade with 2σ uncertainty), Dobson/Brewer (−2.1 ± 0.5 %/decade), and the MOD (−1.6 ± 14 

0.3 %/decade) are consistent over a broad portion of Earth’s atmosphere.  15 

We calculate the cumulative departure of the measured ozone from the 1979-1996 trend 16 

line (solid black line) extended forward to the time period 1997 to 2005, using the cumulative sum 17 

(CUSUM) of residuals technique [Newchurch et al., 2003b; Reinsel, 2002]. If there is less ozone 18 

depletion after 1997 than before, then ozone residuals after 1997 will show systematic positive 19 

values above the projected trend line (black dotted line). The 95% confidence limits for unbiased 20 

residuals appear as the black dotted traces in the right panels of Figure 3, where the limits 21 

increase with time due to unresolved fluctuations and uncertainty in the trend estimates. 22 

If the autocorrelation of the error terms (i.e., the AR(1) term) is significant, two problems 23 

are expected in the ordinary least-squares fittings [e.g., see (8-56) and (8-60) of Johnston, 1984]: 24 

(1) The estimated trend (ω) is unbiased, but the standard deviation for ω is underestimated and 25 

(2) the variance of Ut is also underestimated. The underestimation of the variance of Ut is not 26 

serious in this study because of the relatively large sampling size. The variances of mean level 27 

and trend estimates, however, should be corrected by a correction factor (cf) = (1+r)/(1-r), where r 28 



Attribution of recovery in lower-stratospheric ozone 
Yang et al., submitted to JGR 15 June 2005 

Accepted 22 March 2006 

 

 

15

is an autocorrelation parameter. In addition, the cumulative residuals tend to have more 1 

dispersion in the presence of a positive autocorrelation. Therefore, the variance of the cumulative 2 

ozone residuals (predicted) is calculated as (see Appendix), 3 

 4 

VAR{CUSUM} 5 

 6 

= VAR{CUSUM residuals} + n2
2 * VAR{mean} + [Σ2 (t – to)]2 * VAR{trend}  7 

 8 

≈ cf · σ2 {n2 + n2
2 / n1 + [Σ2 (t – to)]2 / Σ1(t – to)2}, 9 

 10 

where σ is a standard error of the residuals for 1979-1996, n1 is number of data before the 11 

turnaround point (1997.0), n2 is number of data after the turnaround point, to is the mean value of 12 

t for 1979-1996 [see Newchurch et al., 2003b]. The estimated autocorrelation parameters are 13 

~0.5 for the MOD and ~0.4 for the ground Dobson/Brewer data in this study, resulting in inflations 14 

of CUSUM uncertainties by ~70% and ~50% for the MOD and Dobson/Brewer data. However, 15 

the autocorrelation parameter for the SAGE ozone residuals above 18 km is 0.08 so that its trend 16 

and CUSUM uncertainty are much less affected by these autoregressive processes. We expect 17 

the AR(1) parameter to be larger in the total ozone column than in the stratospheric column 18 

above 18 km because of the altitude dependence of the ozone lifetime (decreasing with altitude). 19 

The CUSUMs plotted in the right panels of Figure 3 for the corresponding measurements 20 

are by definition equal to zero at the start of 1997; the small fluctuations prior to 1997 represent 21 

deviations from an assumption of linear ozone depletion over time. The CUSUMs increase 22 

starting in 1997.0, rising significantly above the 95% confidence limits indicated by the black 23 

dotted envelope for years after 1997. For example, the CUSUM metric for the SAGE data is 76% 24 

at the end of data (2005.5), while a CUSUM of only 29% would be considered a 2σ departure 25 

from the extended linear trend line if ozone loss over the 1979-1996 and 1997-2005 time periods 26 

had occurred at the same rate. The green parabolic traces show the expected CUSUM behavior 27 

for ozone levels held constant after 1997.0. The recovery signatures from both the 28 
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Dobson/Brewer networks and the MOD are highly significant, and reflect increases in total 1 

column ozone since 1997. The Dobson/Brewer and MOD CUSUM values are larger than the 2 

SAGE value, because the SAGE value is based on data acquired only above 18 km altitude. As 3 

we show below, the region between the tropopause and 18 km (TP-18 km) contributes 4 

significantly to trends in total column ozone. Recognizing the 2-sigma uncertainty envelopes 5 

shown on Figure 3, we find that taken together, these independent measurements provide 6 

compelling evidence that, outside of the polar regions, the decline in stratospheric ozone above 7 

18 km has slowed down significantly since the beginning of 1997 and the decline in total-column 8 

ozone has stopped entirely. 9 

Figure 4 shows the SAGE/HALOE residual ozone time series between 18-25 km, for 10 

northern mid-latitudes (30-60oN, top panels), tropics (10oS-10oN, middle panels), and southern 11 

mid-latitudes (30-60oS, bottom panels). Because the HALOE ozone measurements are less 12 

sensitive to aerosol loadings than the SAGE measurements, this combined ozone data set 13 

consists of SAGE data before the Pinatubo eruption and HALOE data after the eruption. The 14 

regression of the EESC time series (top panel, Figure 2) onto these ozone time series results in 15 

the corresponding blue lines, representing an estimate of the ozone changes resulting from the 16 

cessation of increasing levels of stratospheric halogens that occurred in approximately 1997. The 17 

time series in the left panels and the CUSUM metrics in the right panels indicate close 18 

correspondence between the observed ozone changes (black traces) and this estimate of ozone 19 

changes due to the halogen loading (blue traces), for all three latitude regions.  20 

Further confirmation that the changes in the ozone time series between 18-25 km are 21 

due to changes in halogen loading is provided by model estimates of the fraction of ozone loss 22 

due to halogens (LossMODEL) over the time period 1979 to present. The regression of LossMODEL 23 

onto the ozone time series is shown by the red lines on the left hand panels of Figure 4. The 24 

CUSUM of the regression is shown by the red lines on the right panels. For northern and 25 

southern mid-latitudes, the CUSUMs for the SAGE/HALOE ozone time series, for EESC, and for 26 

LossMODEL provide an overall consistent picture of a change in linear trend near 1997, consistent 27 
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with the time of peak halogen loading. The slight sensitivity of these results to the year of change 1 

in linear trend (1997 is used here) is described below.  2 

The only deviation from this consistent picture is apparent, but with fewer data points, for 3 

the tropical region from 2001 to present. Here, the CUSUM for residual ozone displays a lag of ~2 4 

years relative to the CUSUM for EESC (black and blue lines, middle right panel, Figure 4).  5 

Notably, the CUSUM for LOSSMODEL indicates that little change in the fractional loss of ozone due 6 

to halogens is expected (red curve) between 1979 and present. This behavior of LOSSMODEL is 7 

driven by a smaller relative contribution of halogens to total ozone loss compared to the other 8 

latitude regions, because in the tropical lower stratosphere, inorganic chlorine and bromine have 9 

yet to be fully released from their organic reservoirs. Loss of ozone by HOx radicals exerts the 10 

predominant chemical influence, and trends in ozone are sensitive to both dynamics and changes 11 

in H2O and CH4. As noted above, similar CUSUM curves for LOSSMODEL in the tropics are found 12 

using a tracer-tracer approach, rather than the more empirical approach (e.g., model constrained 13 

by measured HCl and NOx) used for the curve shown in Figure 4. The disagreement between 14 

CUSUMs for LOSSMODEL and EESC suggests a simple regression of residual ozone would not be 15 

appropriate for the tropical lower stratosphere. This appears to be borne out by the ozone time 16 

series, which does not display a statistically significant change in linear trend as is seen in the 17 

other regions. Furthermore, time series of zonal, monthly mean HALOE H2O and CH4 in the 18 

tropics exhibit significant long-term variability, with a tendency towards lower values since ~2002. 19 

The HALOE H2O and CH4 data suggest the tropical lower stratosphere has undergone significant 20 

recent change in the effect of both transport and thermodynamics on its overall composition. 21 

To establish attribution of the improving ozone conditions, we examine measurements of 22 

ozone collected in various altitude regions. Three altitude regions are considered: tropopause to 23 

18 km, 18 to 25 km, and 25 km to the top of the atmosphere (TOA). Here, only data acquired in 24 

the northern hemisphere mid-latitudes are shown. Changes in ozone as a function of altitude in 25 

southern hemisphere mid-latitudes are challenging to define because SAGE I measurements 26 

below 18 km altitude are unreliable (in both hemispheres) and Lauder ozonesonde observations 27 

start in 1987. Figure 5 shows changes in ozone at 30-60oN for the three altitude regions noted 28 
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above, compared in this case to time series of EESC. The change in EESC is consistent with the 1 

measured ozone behavior in the 18-25 km layer. This correspondence strongly suggests that 2 

chemistry related to EESC changes, as opposed to dynamical changes, has been responsible for 3 

the ozone changes in this layer. The correspondence between EESC and the ozone time series 4 

and CUSUMs in Figure 4 support this conclusion.  5 

Table 1 summarizes the estimated trends in ozone for the three altitude regions between 6 

30-60oN, as well as the total column, based on various data sets. The decline in total column 7 

ozone from 1979-1996 was −9.3 ± 3.3 (2σ) DU/decade in the MOD record and −8.7 ± 2.3 (2σ) in 8 

the Dobson/Brewer networks (Table 1). Ozonesondes yield a value of −2.1 ± 1.6 DU/decade for 9 

the change between the tropopause and 18 km. Trends of ozone in the 18-25 km layer are −3.9 ± 10 

0.9 based on only SAGE I/II, −4.7 ± 1.3 DU/decade based on the ozonesonde time series, and 11 

−4.4 ± 1.2 DU/decade using the SAGE/HALOE record (all uncertainties throughout are 2σ 12 

estimates). From 25 km to the TOA, SAGE indicates −4.3 ± 1.0 DU/decade was lost. Hence, we 13 

find that ~20% of the decline of total ozone from 1979-1996 was due to changes between the 14 

tropopause and 18 km, 38% of the drop occurred between altitudes of 18-25 km, and 42% of the 15 

change occurred above 25 km. 16 

The altitude partitioning of the improvement in the stratospheric ozone layer starting in 17 

1997 is significantly different from the altitude partitioning of the decline (Table 1). The same data 18 

sets described above yield an improvement in total ozone column of 16.3 ± 6.6 DU/decade from 19 

1997-2005 with respect to the declining trend line, with 49% of the improvement occurring 20 

between the tropopause and 18 km, 21% between altitudes of 18-25 km, and 30% due to ozone 21 

increases above 25 km. 22 

The ozone changes in the tropopause to 18 km layer since 1997.0, as shown in Figure 5 23 

(bottom panel) and Table 1, are much larger than can be explained by known chemistry (i.e., the 24 

EESC fit accounts for only approximately 50 CDU of the calculated 389 CDU change, where CDU 25 

is cumulative DU). An analysis based on LossMODEL, using known photochemistry and established 26 

tracer relations, similarly fails to account for the observed features of the ozone time series (not 27 

shown). We should expect that some of the ozone change in the lower layer since 1997 results 28 
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from a change in the flux from the source layer above, because of the chemically induced ozone 1 

change in the 18-25 km layer, even if there is no change in the dynamics. Based on an ozone 2 

change of 249 CDU in the 18-25 km layer (average of 167 for SAGE, 309 for SAGE/HALOE and 3 

271 for ozonesondes, see Table 1), and because there is approximately twice as much ozone in 4 

this layer as in the tropopause to 18 km layer, a change of perhaps 124 CDU in the lower layer 5 

might be related to this change of the downward flux without any change in the dynamics. 6 

Combining this change with the EESC effect falls significantly short of accounting for the 7 

observed change of 389 CDU relative to the pre-1997 trend. Therefore, transport changes 8 

probably dominate the changes in ozone from 1997 to 2005, between the tropopause and 18 km, 9 

for the 30-60oN region. 10 

Because of the slowly-varying changes in ozone depleting substances at the ground and 11 

the effect of mixing (which induces a spectrum to the mean age of air) [e.g., Waugh et al., 2001; 12 

Engel et al., 2002], the expected turnaround point for ozone cannot be precisely defined. Figure 6 13 

illustrates the sensitivity of the analysis to variations in the turnaround year, for residuals at 18-25 14 

km, 30-60oN, for SAGE ozone (left panels) and ozonesonde ozone (right panels) residuals. The 15 

late turnaround points in 1998 and 1999 result in more precise trend estimates and less 16 

uncertainty of the CUSUM envelopes, which are balanced by the smaller CUSUM values due to 17 

the smaller number of time steps for CUSUM calculations. Nonetheless, for turnaround in 1998 or 18 

1999, the CUSUMs for SAGE and ozonesonde residuals approach or exceed the 95% 19 

confidence intervals (black dotted lines) at the end of the time period.  Assuming a turn around 20 

point of 1995.0 (top panels, Figure 6) is the only case where the CUSUM values fails to exceed 21 

the 95% confidence interval. In this case, the turn around point is close to the discontinuity 22 

caused by the data exclusion during the Pinatubo period.  Figure 6, therefore, shows shifts of the 23 

turn around time by about one year forward from 1997.0, or two years after 1997.0, do not 24 

change the conclusions of this study. 25 

 26 

 27 

 28 
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6. Relative roles of transport and chemistry 1 

Support for the inferred relative roles of chemistry and transport in producing the 2 

observed ozone changes since 1997.0 is provided by results shown in Figures 7 through 9. The 3 

residual column ozone at 18-25 km and TP-18 km in Figure 5 has significant periodicities of 3-5 4 

years. In order to show a clear long-term change in ozone, these ENSO-like signals are removed 5 

from the ozone time series [e.g., Steinbrecht et al., 2005] only in Figures 7 and 8 in this study. 6 

Figure 7 displays results of the regression of EESC, temperature (T), tropopause height (TPH), 7 

and potential vorticity (PV) onto residual ozone values smoothed with a 13-month filter. The 8 

temperature, tropopause height, and potential vorticity are calculated at the same locations and 9 

times as the ozonesonde measurements, using NCEP reanalysis data. The cause of long term 10 

changes in temperature and tropopause height is difficult to assess, since each is sensitive to 11 

climate change as well as ozone depletion [e.g., Santer et al., 2003].  Indeed, Santer et al. [2003] 12 

estimate, based on a climate model simulation, that declining ozone is the largest contributor to 13 

rising tropopause height over the 1979 to 1999 time period. However, rising levels of greenhouse 14 

gases are also expected to lead to significant increases in tropopause height. The changes in PV 15 

illustrated in Figure 7 are likely indicative of changes in Rossby wave breaking events that can 16 

clearly affect ozone time series in this region of the atmosphere [e.g., Koch et al., 2002].  17 

However, PV can also change due to variations in static stability, and hence is not uncoupled 18 

from changes in tropopause height and temperature.  19 

The analysis shown in Figure 7 indicates that variations of temperature, tropopause 20 

height and PV explain more of the ozone variance from 1979 to 2005 in the lower layer 21 

(tropopause to 18 km) than they explain in the 18 to 25 km region. The overall percentage of the 22 

ozone variance explained by EESC, relative to T, TPH, and PV is much larger for the 18-25 km 23 

region than the TP-18 km layer. However, as noted above, variations in T, TPH, and PV could be 24 

due to feedbacks related to ozone changes, or could be driven by changes in transport ultimately 25 

related to climate change. 26 

To further explore the factors responsible for observed variations in ozone at different 27 

atmosphere levels, we examine the relation between these quantities over shorter time periods. 28 
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Figure 8, using a 3-month filter on ozone residuals, shows the close correspondence of ozone 1 

with T, TPH, and PV on time scales of a few months. We tested several proxies and found that 2 

except for ENSO, their influences on the long-term changes in ozone at 18-25 km are negligible, 3 

although the other proxies have some effects on the ozone below 18 km. The overall higher 4 

correlations of T, TPH, and PV with ozone residuals below 18 km, relative to the correlation with 5 

EESC, when residuals are examined for short term fluctuations provides further evidence that 6 

changes in ozone below 18 km are not driven by halogen chemistry. The weak correlations 7 

between these dynamical variables and ozone above 18 km, relative to the correlation of O3 with 8 

EESC, suggests a weak contribution from changes in dynamics (or climate) to long-term changes 9 

in ozone above 18 km. Similarly, the weak correlation between EESC and ozone below 18 km 10 

shown in Figure 8 is indicative of small contribution of ClOx/BrOx chemistry to the long-term 11 

change in ozone below 18 km. Although temperature explains 48% and 38% of ozone variance at 12 

18-25 km in Figures 7 and 8, the linear decrease of temperature over the entire time period does 13 

not match the curved shape of the ozone residual at 18-25 km. The linear decrease of 14 

temperature over time, different in shape from the ozone time series, seems consistent with 15 

forcing from both changes in ozone and rising levels of greenhouse gases [e.g., Santer et al., 16 

2003]. 17 

It has been suggested that the turnaround year of 1997 might pose a complication due to 18 

a number of cold Arctic winters that began in this time period [Weatherhead and Andersen, 2005].  19 

To investigate the influence of polar ozone loss on the extra-polar ozone time series, we examine 20 

the relation between residual ozone and the volume of air in the Arctic vortex exposed to polar 21 

stratospheric clouds (VPSC). It has been shown that VPSC is a good proxy for chemical loss of 22 

Arctic ozone [Rex et al., 2004; Tilmes et al., 2004; Chipperfield et al., 2005]. Figure 9 compares 23 

the time series of residual ozone for various altitudes and latitudes, as indicated, to a time series 24 

for VPSC that is based on the same data points for each panel. The values of VPSC are calculated 25 

in the same manner as described by Rex et al. [2004]. The regressions of SAGE ozone residuals 26 

with VPSC appear as blue for regions showing negative correlations and are plotted as negative 27 

values to visually emphasize the correlation; red is used for regions showing positive correlations 28 
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between residual ozone and VPSC. A negative correlation between VPSC and residual ozone 1 

means that larger values of chemical loss of polar ozone are associated with decreases in the 2 

ozone abundance at mid-latitudes, as hypothesized by Weatherhead and Andersen [2005]. 3 

Figure 9 shows the region of strong, negative correlations between VPSC and SAGE ozone 4 

variations for 50-60oN, below ~16 km. These results suggest horizontal transport of chemically 5 

depleted ozone from the Arctic vortex might account for some of the observed negative trends in 6 

ozone for this region of the atmosphere. But, this influence appears to be confined mainly to 7 

altitudes below ~16 km, and latitudes poleward of 50oN. The regressions shown in Figure 9 8 

demonstrate that, for the majority of the extra-polar data considered here, the dominant changes 9 

in ozone are not driven by polar ozone chemical loss.   10 

Hadjinicolaou et al. [2005] state “all of the observed upward trend [in total column ozone 11 

from MOD] from 1994 to 2003 are reproduced by the [SLIMCAT] model which is forced only by 12 

transport changes” [e.g., halogen levels are fixed at 1980’s levels]. This finding appears at first 13 

glance to be different from our results, which require both chemical and dynamical forcings to 14 

reproduce measured ozone residuals since 1997. Figure 1 and figure 2a in Hadjinicolaou et al. 15 

[2005] show that (1) the negative trend in total column ozone for 1979-1993 is mostly due to the 16 

increasing halogen loading for the same period and (2) the transport changes along with fixed 17 

halogen loading is mostly responsible for the rise in column ozone for 1994-2003. Their results, 18 

as shown in their figure 2a in particular, appear to us to require the existence of a substantial 19 

change in halogen loading, between 1980 and 1994, in order to explain the changes in column 20 

ozone over the entire time period. Note that their model with fixed halogen loading is predicting 21 

larger ozone values in 2003 than in 1980, which is contrary to observations shown here. 22 

Positive changes in ozone since 1996 were also obtained from the MOD, SBUV(/2), and 23 

Dobson/Brewer total ozone data by Reinsel et al. [2005], who showed that the changes were 24 

significant both with and without the dynamical considerations. Their result indicates that the 25 

changes in total column ozone are attributable to chemistry as well as dynamics. Our study 26 

compliments the analysis of Reinsel et al. [2005] by showing that the positive trend in ozone since 27 



Attribution of recovery in lower-stratospheric ozone 
Yang et al., submitted to JGR 15 June 2005 

Accepted 22 March 2006 

 

 

23

1996/1997 results both from the transport driven increases in ozone for the tropopause to 18 km 1 

layer and from predominantly chemical driven increases in ozone for altitudes above 18 km. 2 

Finally, Salawitch et al. [2005] noted that bromine supplied to the stratosphere from 3 

biogenic bromine and tropospheric BrO could lead to larger amounts of ozone depletion, between 4 

the tropopause and ~18 km, compared to models that consider supply of bromine only from 5 

CH3Br and halons. The effect of biogenic bromine on ozone trends is most notable during time of 6 

elevated aerosol loading (figure 4 of Salawitch et al.). During periods of background loading, ClO 7 

levels are too small, below 18 km, for ozone loss by the BrO+ClO cycle to be efficient. We have 8 

conducted simulations using constant offsets to the Bry relation based on the WMO Baseline Ab 9 

scenario for CH3Br and halons (not shown), and the resulting values of LOSSMODEL are unable to 10 

reproduce the large increases in ozone observed below 18 km since 1997. It is important to note 11 

that these simulations assumed constant offsets to Bry (e.g., that the supply of bromine from short 12 

lived, biogenic bromocarbons and tropospheric BrO is constant over time). If the supply of 13 

biogenic bromine to the stratosphere had varied over time, with a strong decrease after 1997, 14 

then ozone levels would be expected to rise, due to the BrO+HO2 cycle (figure 5 of Salawitch et 15 

al.). However, values of Bry inferred from balloon observations of BrO appear to exhibit a near 16 

constant offset relative to the bromine content of CH3Br+halons, data that spans stratospheric 17 

entry dates of 1992 to 2002 [figure 1-8 of WMO, 2003; Dorf, 2005]. Therefore, we consider it 18 

unlikely that biogenic bromine could be responsible for the rise in ozone observed between 18 km 19 

and the tropopause since 1997.  20 

We conclude that observed ozone changes in the 18-25 km layer since 1979 are 21 

consistent with chemical effects driven by increases in halogens. However, increases in ozone 22 

observed after 1997 between the tropopause and 18 km likely have had a significant transport 23 

component. About half of the observed increase in ozone since 1997 has occurred between the 24 

tropopause and 18 km. 25 

 26 

 27 

 28 
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7. Conclusions 1 

Analyses of monthly stratospheric and total-column ozone values from three independent 2 

satellite instruments and two ground-based networks of sensors comprising combinations of the 3 

SAGE I/II, HALOE, merged TOMS/SBUV satellites, the Dobson/Brewer ground-based networks, 4 

and the global ozonesonde network indicate that the thickness of Earth’s stratospheric ozone 5 

layer stopped declining after about 1997. Regression analyses of both EESC (effective equivalent 6 

stratospheric chlorine) and of more sophisticated photochemical calculations independently 7 

indicate that the temporal signature of the observed changes in ozone above 18 km altitude is 8 

consistent with the timing of peak stratospheric halogen abundances, which occurred mid-way 9 

through 1997. These results confirm the positive effect of the Montreal Protocol and its 10 

amendments on limiting the growth of stratospheric chlorine and bromine, and in protecting 11 

Earth’s ozone layer. 12 

Increases in stratospheric ozone at NH mid-latitudes since the mid-1990s are also 13 

observed for altitudes below 18 km. These increases appear to be driven principally by changes 14 

in atmospheric dynamics. The changes in ozone for this height region exhibit positive correlations 15 

with dynamical proxies such as potential vorticity and tropopause height, and do not bear the 16 

signature of expected long-term change due to stratospheric halogens. The rise in total column 17 

ozone since 1997, for NH mid-latitudes (30−60oN), appears to be caused by ~50% contribution 18 

from increases in ozone below 18 km altitude, and ~50% contribution from rising ozone above 18 19 

km. Hence, both chemical and dynamical forcings appear to be responsible for the observed rise 20 

in column ozone at NH mid-latitudes since 1997. Much work remains in order to understand 21 

whether the dynamically driven changes are due to natural variability or due to changes in 22 

atmospheric structure related to anthropogenic climate change. Furthermore, the recent 23 

observations of stratospheric ozone were obtained during a time of unusually low levels of 24 

stratospheric aerosol loading. Chemical reactions initiated by volcanic aerosol that penetrates the 25 

stratosphere, should a major eruption occur, will almost certainly lead to short periods of lower 26 

ozone due to ozone destruction by anthropogenic halogens in the presence of those aerosols.  27 
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We conclude by noting that our paper represents the complete data record from the 1 

remarkable SAGE and HALOE instruments. SAGE I commenced observations in 1979 and 2 

SAGE II ceased operating on August, 22 2005. HALOE ceased operating on December 14, 2005. 3 

The SAGE I/II and HALOE instruments documented ozone depletion due to rising CFCs, the start 4 

of the recovery of ozone (above 18 km) due to declining CFCs, and an unanticipated significant 5 

increase in ozone since 1997 (between the tropopause and 18 km) due most likely to changes in 6 

stratospheric transport. The data record provided by HALOE and SAGE played an important role 7 

in quantifying the effect of human activity on the ozone layer that led to the passage of the 8 

Montreal Protocol and its amendments that restricted the production of CFCs. 9 
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Figure Captions 1 

 2 

Figure 1. Comparison of modeled and measured HCl and NOx. Time series of zonal, monthly 3 

mean HCl and NOx measured by HALOE  (black circles) at 20 and 25 km, for indicated 4 

latitude regions, compared to calculated values of HCl and NOx (red dots). Data and 5 

model results for HCl include sunrise and sunset points. Data and model results for NOx 6 

are shown only for sunset. The comparisons for sunrise (not shown) are comparable, but 7 

both measured and modeled NOx are lower than sunset values, due to the diurnal cycle 8 

of NOx. The simulations for the equatorial regions are constrained to measured HCl and 9 

NOx during the UARS time period (Cly and NOy are adjusted in the model); for earlier time 10 

periods, monthly mean values of Cly and NOy normalized to 1993 are propagated 11 

backwards, using the known temporal changes in organic chlorine and N2O.  12 

 13 

Figure 2. Time series of Equivalent Effective Stratospheric Chlorine, EESC, (upper) and fractional 14 

ozone loss rate due to halogens (lower). The fractional ozone loss rate (LossMODEL) 15 

results from photochemical model calculations that are constrained by observations as 16 

described in the text. Fractional ozone loss rate is the  ozone loss rate due to halogens 17 

divided by total ozone loss rate integrated from 18 to 25 km weighted by the ozone 18 

concentrations at each altitude in 7 latitude bands. The blue lines show the EESC series 19 

fitted to the fractional loss rates whose data are excluded during the Pinatubo period.  20 

 21 

Figure 3. Time series of monthly average ozone residuals plus linear trend (left) and cumulative 22 

sum (CUSUM) of residuals (right) in % for the SAGE(black)/HALOE(red) stratospheric 23 

ozone columns above 18 km between 60oS-60oN (top panels), Dobson/Brewer total 24 

ozone columns 30oS-60oN (middle panels), and merged TOMS/SBUV (MOD) total ozone 25 

columns 60oS-60oN (bottom panels). The SAGE, HALOE, Dobson/Brewer, and merged 26 

TOMS/SBUV monthly residuals are all independently obtained by removing the seasonal, 27 

solar, and QBO terms from their respective ozone series. The trend line indicates the 28 
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ozone trend calculated from observations for 1979-1996 (solid line) and forecasted 1 

linearly afterward (dotted line). Linear trends and 95% confidence intervals for 1979-1996 2 

are listed. The ozone residuals during the Pinatubo period are shown in open circles, but 3 

they are excluded from the trend calculations. The last value in the cumulative residual 4 

time series represents the cumulative difference of all monthly residuals after 1997.0 with 5 

respect to the predicted trend line. The green line represents the hypothetical case where 6 

the ozone values remained at their 1997.0 value until 2005. The black dotted lines in the 7 

right panels indicate the 95% confidence envelopes of departure from natural variability 8 

and model uncertainty.  9 

 10 

Figure 4. Time series of monthly ozone residuals plus linear trend (black trace in the left panels) 11 

and cumulative sum of residuals (black trace in the right panels) for the SAGE/HALOE 12 

data integrated from 18 to 25 km for 30-60oN (top panels), 10oS-10oN (middle panels), 13 

and 30-60oS (bottom panels).Tabulated trends correspond to 1979-1996 (black line in left 14 

panels) projected to 2005 (dotted black lines, left panels). The SAGE data are used for 15 

the period before the Pinatubo volcanic eruptions and HALOE data afterwards. The blue 16 

lines represent the ozone change estimated by the EESC fit (left) and its cumulative sum 17 

(right). The red lines show the ozone evolution expected from the photochemical 18 

calculations (left panels) and  the cumulative sum of the ozone change estimated by the 19 

calculated fractional loss rate (right panels). The black dotted lines in the right panels 20 

indicate the 95% confidence envelopes of departure from natural variability and model 21 

uncertainty  22 

 23 

Figure 5. Time series of monthly ozone residuals plus linear trends from SAGE (red traces in the 24 

left panels) and ozonesondes (black traces) at 30-60oN; cumulative sum in the right 25 

panels in DU. Top panels display SAGE I/II values above 25 km and the associated 26 

EESC fit. Middle panels display ozonesonde values from 11 stations (black), SAGE I/II 27 

(red) and EESC fit (blue) at 18-25 km. The ozone residuals during the El Chichon and 28 
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Pinatubo period are shown in open circles, but they are excluded from the trend 1 

calculations. Bottom panels display ozonesonde values (black) and SAGE II (red) with 2 

EESC fit to ozonesonde values (blue) between tropopause and 18 km. 3 

 4 

Figure 6. CUSUM calculations for the SAGE (left panels) and ozonesonde (right panels) ozone 5 

residuals between 18-25 km, 30-60oN. The turnaround points are selected at 1995.0, 6 

1996.0, 1997.0, 1998.0, and 1999.0 (top to bottom panels, respectively). 7 

 8 

Figure 7. Ozonesonde residuals plus trend (black traces) between tropopause-18 km (left panels) 9 

and 18-25 km (right panels) when additional ENSO-like signals (periodicities of 31-60 10 

months) are removed from the ozonesonde measurements between 30-60oN in Figure 5. 11 

Similarly, the respective residuals are calculated for temperature, tropopause height, and 12 

potential vorticity. These residuals are smoothed by a 13-month running mean to show 13 

their long-term changes. The ozone residuals are separately regressed against the EESC 14 

series (first panel) and temperature residuals (second panel), tropopause-height 15 

residuals (third panel), and potential-vorticity residuals (fourth panel). The estimated 16 

ozone responses are shown in blue lines for EESC, T, TPH, and PV, respectively. The 17 

percentage of the ozone variance explained individually by the exogenous variable is 18 

shown in the individual panels.  19 

 20 

Figure 8. Same as in Figure 7, but smoothed by a 3-month (instead of 13-month) running mean to 21 

show the short-term fluctuations of ozone, EESC, temperature, tropopause height, and 22 

potential vorticity. 23 

 24 

Figure 9. Time series of the volume of polar stratospheric air containing Polar Stratospheric 25 

Clouds (Vpsc) and SAGE ozone residuals at 50-60oN, 40-50oN, and 30-40oN from 10 to 26 

24 km. The ozone residuals for March and April are regressed onto the Vpsc values. The 27 

negative of the Vpsc series is plotted when the correlations are negative (blue line) in 28 
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order to visually emphasize the correlations. The negative correlation coefficient is 1 

significant only below 18 km at 50-60oN. 2 

 3 
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Table 1. Altitude distribution of decreasing trends, uncertainties, and fractional altitude 1 

partitioning (1979-1996) from five different ozone records between 30-60oN and corresponding 2 

average accumulation rates**, uncertainties, and altitude partitioning (1997-2005). 3 

 4 
 5 
  6 

*mean ozone deviations assumed for missing data points. 7 

**The CUSUM value is the cumulative (consecutive) sum of the ozone residual deviations from 8 

the projected trend line in the left panels of Figures 3 through 5. For a 1979-1996 trend estimate 9 

of ω1, assuming a linear trend, ω2, after 1997.0, the ozone deviations from the 1979-1996 trend 10 

line will follow the line, (ω2−ω1) * t, with random fluctuations. Therefore, [CUSUM]t = Integral of 11 

(ω2−ω1) * t = ½ * (ω2−ω1) * t2, where t is months. For example, [CUSUM]t = 309 CDU at t = 108 12 

months (9 years * 12 months/year) in the upper panel of Figure 4. Then, 309 = ½ * (ω2−ω1) * t2 13 

and (ω2−ω1) = 6.4 DU/decade. With ω1 = −4.4 DU/decade in Figure 4, ω2 = 2.0 DU/decade. 14 

Therefore, the 1997-2005 average accumulation rate estimated by the CUSUM value is +2.0 15 

DU/decade. This result is not a trend calculation, but rather an average accumulation rate with 16 

the starting point (1997.0) fixed to the value of 1979-1996 trend line at 1997.0 with all data are 17 

equally weighted. From this argument, however, it is clear that the change in trend at 1997.0 is 18 

proportional to the CUSUM value. 19 

 20 

Altitude Instrument Trend  Trend % of CUSUM Average Accumulation % of 
 Range   1979-1996 Uncertainty Total 1997-2005 Accumulation Rate Total 

    [DU/decade] 2σ 1979- CDU(2σ) Rate Uncertainty   1997-
         1996    [DU/decade] 2σ 2005 

25 km-TOA SAGE −4.3 1.0 42 238 (141)* 4.9 2.9 30 
18-25 km  Ozonesonde −4.7 1.3   271 (206) 5.6 4.2   

  SAGE −3.9 0.9 38 167 (138)* 3.4 2.8 21 
  SAGE/HALOE −4.4 1.2   309 (174)* 6.4 3.6   
  Average −4.3 0.7     5.1     

TP-18 km Ozonesonde −2.1 1.6 20 389 (256) 8.0 5.3 49 

Σ layers 
SAGE/ 

SAGE/sonde −10.3 2.1   794 (323) 16.3 6.6   
Total  D/B −8.7 2.3   845 (399) 17.4 8.2   

Column MOD −9.3 3.3         
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Appendix: 1 

When the error terms in the regression model are positively correlated, the ordinary least 2 

squares (OLS) estimates suffer the following two problems (e.g., Johnston, 1984). 3 

 4 

1. The estimated regression coefficients are unbiased, but their error estimates could be 5 

underestimated. 6 

2. The variance of ozone residuals is underestimated. 7 

 8 

The second problem is not serious in this study because of large sampling size (~200). The 9 

variance of a cumulative sum of residuals, however, increases due to a positive autocorrelation of 10 

ozone residuals (see Section C). 11 

 12 

A. AR(1) term in time series data 13 

The typical trend model for ozone can be described as 14 

 15 

tttt SolarQBOStcO ][][][][ 3 γβαω ++++=  + Ut    (A1) 16 

 17 

where c and ω are constant and  linear trend terms and [S]t, [QBO]t, and [Solar]t represent ozone 18 

variations due to season, QBO, and solar variations, respectively. Ozone trend plus error terms 19 

are now obtained by subtracting season, QBO, and solar variations from the original ozone time 20 

series, leading to the following expression:  21 

 22 

tt utcO ++= ω'][ 3         (A2) 23 

 24 

where ut = ρ ut-1 + εt and εt is a white noise process (i.e., sequential errors are independent of 25 

each other). Even after removing ozone signals with phase (seasonal, QBO, and solar terms), the 26 

error term often shows a first-order autoregressive process, AR(1). The autocorrelated 27 

disturbance could be attributed mostly to missing explanatory variables, misspecification of the 28 
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form of regression, or characteristics of a data set. If the AR(1) parameter, ρ, is positive, the 1 

estimates (c and ω) in Equation (A2) are unbiased but their standard errors are underestimated 2 

[e.g., Pindyck and Rubinfeld, 1998]. 3 

 4 

In particular, at t-1, the above ozone series can be written as 5 

 6 

113 )1('][ −− +−+= tt utcO ω .       (A3) 7 

 8 

Then, 9 

 10 

using ttt uu ερ += − 1 , 11 

 12 

ttt tcOtcO εωρω +−−−=−− − )}1(']{['][ 133 . 13 

 14 

When introducing transformed variables, [O3]*t, c*, and t*, we obtain 15 

 16 

tt tcO εω ++= ****][ 3         (A4)  17 

 18 

where  19 

[O3]t* = [O3]t′ – ρ [O3]t-1′ = (1- ρB) [O3]t′, 20 

 21 

c* = c (1– ρ) = (1- ρB) c, 22 

 23 

t* = t – ρ (t-1) = (1- ρB) t, and 24 

 25 

B is a backward shift operator, i.e., B[O3]t′ = [O3]t-1′. 26 

 27 
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In order to estimate the autocorrelation parameter ρ, we use the Hildreth-Lu procedure which 1 

minimizes the error sum of squares in the transformed regression model (A4) [Neter et al., 1996]. 2 

The estimate of ρ is denoted here as r.  The transformation reported by (A4) is the same as the 3 

transformation used by the Yule-Walker procedure [Pankratz, 1983] and the results obtained here 4 

are similar to the results obtained using that procedure. 5 

 6 

B. Variance of CUSUM without an AR(1) term 7 

If there is no AR(1) term in the regression model (A2), and if the ozone trend after the 8 

turnaround point (To) is the same as that before To (same-trend hypothesis), the variance of the 9 

predicted ozone time series ([O3]t′) after To is [Makridakis et al., 1983; Draper and Smith, 1998]: 10 

 11 

Variance of predicted [O3]t′ 12 

 13 

 = VAR{residuals} + VAR{mean estimate} + VAR{trend estimate} 14 

 15 

= σu
2 {1 + 1 / n1 + (t – τ1)2 / Σ1(t – τ1)2}.      (B1) 16 

 17 

where  18 

 VAR{residuals} = σu
2, 19 

 20 

 VAR{mean estimate} = σu
2 / n1, 21 

 22 

VAR{trend estimate} = σu
2 / Σ1(t – τ1)2 = σu

2 / [(t1 – τ1) + (t2 – τ1) + … + (tn1 – τ1)]2, 23 

 24 

n1 = number of data prior to To, 25 

 26 

n2 = number of data from To onward, 27 

 28 
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τ1 = mean value of t prior to To, and  1 

 2 

τ2 = mean values of t after To. 3 

 4 

The first term in the right hand side of Equation (B1) arises from random noise and the second 5 

and third terms result from uncertainties in regression coefficients of mean and trend estimates. 6 

 7 

The variance of CUSUM is a variance of the cumulative predicted-[O3]t′ such that 8 

 9 

CUSUM variance of predicted [O3]t′ 10 

 11 

= E[{Σ2 ([O3]t′ – E[O3]t′])}2]  12 

 13 

= n2 · VAR{residuals} + n2
2 · VAR{mean estimate} + Σ1(t – τ1)2 · VAR{trend estimate} 14 

 15 

= σu
2 {n2 + n2

2 / n1 + [Σ2 (t – τ1)]2 / Σ1(t – τ1)2},     (B2) 16 

 17 

where n1 is the number of data prior to To and E[x] is the expected value of x. The variance of 18 

CUSUM after To increases with t, t2, and t4 due to random fluctuations, uncertainty in mean level, 19 

and uncertainty in trend estimate, respectively [Newchurch et al., 2003b].  20 

 21 

C. CUSUM variance with an AR(1) term 22 

If the residuals are correlated in an AR(1) process, the regression model (A2) does not 23 

provide the correct uncertainty in the trend estimate. Instead, the regression model (A4) 24 

estimates an unbiased standard error of the ozone trend. Comparing models (A2) and (A4), we 25 

can see that the independent variable t* converges to t when r → 0. Since we are interested in 26 

ozone variations for actual time step (t), (A4) divided by (1-rB) leads to, 27 

 28 
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)1(*1
*'][ 3 Brtr

cO tt −++−= εω
      (A4′)  1 

 2 

VAR{predicted [O3]t′} 3 

 4 

= VAR{residuals} + VAR{mean estimate} + VAR{trend estimate} 5 

 6 

≈ σu
2 {1 + 1 / n1 · cf + (t – τ1)2 / Σ1(t – τ1)2 · cf}     (B1′) 7 

 8 

where  9 

 10 

σu
2 = σε2 / (1-r2) from the relation ut = ρ ut-1 + εt, 11 

 12 

VAR{residuals} = VAR{εt / (1-rB)} = VAR{(1 + rB + r2B2 + r3B3 + … )εt} = σε2 / (1-r2), 13 

 14 

VAR{mean estimate} = σε2 / (1-r)2 / n1, = σu
2 · (1-r2) / (1-r)2 / n1 = cf · σu

2 / n1, 15 

 16 

VAR{trend estimate} = σε2 / ∑(t*)2 = σε2 / [(1-r)2 ∑(t)2]  = cf · [σε2 / (1-r2)] / ∑(t)2,  17 

 18 

and cf = (1+r) / (1-r). 19 

 20 

Due to the positive autocorrelations seen in most ozone time series, the ozone residuals 21 

in the next step tend to follow the previous residual disturbances, resulting in more dispersion 22 

from their expectation value. Indeed, a larger variance of CUSUM residuals is estimated if the 23 

autocorrelation parameter r is positive. 24 

 25 

At t = n1 + 1 (first data point after To),  26 

E[ut · ut]  27 
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= E[(εn1+1 + r εn1 + r2 εn1-1 + r3 εn1-2 +…) · (εn1+1 + r εn1 + r2 εn1-1 + r3 εn1-2 +…)] 1 

= E[(εn1+1
2 + r2 εn1

2 + r4 εn1-1
2 + r6 εn1-2

2 +…)] 2 

= σε2 + r2 σε2 + r4 σε2 + r6 σε2 + … 3 

= 1 · σε2 / (1-r2) 4 

 5 

At t = n1 + 2 (second data point after To),  6 

E[(ut + ut-1) · (ut + ut-1)]  7 

= E[{(εn1+2 + r εn1+1 + r2 εn1 + r3 εn1-1 +…) + (εn1+1 + r εn1 + r2 εn1-1 + r3 εn1-2 +…)} · {(εn1+2 + r 8 

εn1+1 + r2 εn1 + r3 εn1-1 +…) + (εn1+1 + r εn1 + r2 εn1-1 + r3 εn1-2 +…)}] 9 

= E[(εn1+2
2 + (1+r)2 εn1+1

2 + r2 (1+r)2 εn1
2 + r4 (1+r)2  εn1-1

2 +…)] 10 

= σε2 + (1+r)2 / (1-r2) · σε2 11 

 = (2+2r) · σε2 / (1-r2) 12 

 13 

At t = n1 + 3 (third data point after To),  14 

E[(ut + ut-1 + ut-2) · (ut + ut-1 + ut-2)]  15 

= E[{(εn1+3 + r εn1+2 + r2 εn1+1 + r3 εn1 +…) + (εn1+2 + r εn1+1 + r2 εn1 + r3 εn1-1 +…) + (εn1+1 + r 16 

εn1 + r2 εn1-1 + r3 εn1-2 +…)} · {(εn1+3 + r εn1+2 + r2 εn1+1 + r3 εn1 +…) + (εn1+2 + r εn1+1 + r2 εn1 + r3 εn1-1 17 

+…) + (εn1+1 + r εn1 + r2 εn1-1 + r3 εn1-2 +…)}] 18 

= E[(εn1+3
2 + (1+r)2 εn1+2

2 + (1+r+r2)2 εn1+1
2 + r2 (1+r+r2)2 εn1

2 + r4 (1+r+r2)2 εn1-1
2 +…)] 19 

= σε2 + (1+r)2 · σε2 + (1+r+r2)2 / (1-r2) · σε2 20 

 = (3+4r+2r2) · σε2 / (1-r2) 21 

 22 

At t = n1 + 4 (fourth data point after To),  23 

E[(ut + ut-1 + ut-2 + ut-3) · (ut + ut-1 + ut-2 + ut-3)]  24 

= E[{(εn1+4 + r εn1+3 + r2 εn1+2 + r3 εn1+1 +…) + (εn1+3 + r εn1+2 + r2 εn1+1 + r3 εn1 +…) + (εn1+2 + 25 

r εn1+1 + r2 εn1 + r3 εn1-1 +…) + (εn1+1 + r εn1 + r2 εn1-1 + r3 εn1-2 +…)} · {(εn1+4 + r εn1+3 + r2 εn1+2 + r3 26 

εn1+1 +…) + (εn1+3 + r εn1+2 + r2 εn1+1 + r3 εn1 +…) + (εn1+2 + r εn1+1 + r2 εn1 + r3 εn1-1 +…) + (εn1+1 + r 27 

εn1 + r2 εn1-1 + r3 εn1-2 +…)}] 28 
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= E[(εn1+4
2 + (1+r)2 εn1+3

2 + (1+r+r2)2 εn1+2
2 + (1+r+r2+r3)2 εn1+1

2 + r2 (1+r+r2+r3)2 εn1
2 + r4 1 

(1+r+r2+r3)2 εn1-1
2 +…)] 2 

= σε2 + (1+r)2 · σε2 + (1+r+r2)2 · σε2 + (1+r+r2+r3)2/ (1-r2) · σε2 3 

 = (4+6r+4r2+2r3) · σε2 / (1-r2) 4 

· 5 

· 6 

· 7 

At t = n1 + n2 (last data point),  8 

E[(ut + ut-1 + ut-2 + ut-3 +…) · (ut + ut-1 + ut-2 + ut-3 +…)]  9 

= E[{(εn1+n2 + r εn1+n2-1 + r2 εn1+n2-2 + r3 εn1+n2-3 +…) + (εn1+n2-1 + r εn1+n2-2 + r2 εn1+n2-3 + r3 10 

εn1+n2-4 +…) + …} · {(εn1+n2 + r εn1+n2-1 + r2 εn1+n2-2 + r3 εn1+n2-3 +…) + (εn1+n2-1 + r εn1+n2-2 + r2 εn1+n2-3 + 11 

r3 εn1+n2-4 +…) + …}] 12 

= E[(εn1+n2
2 + (1+r)2 εn1+n2-1

2 + (1+r+r2)2 εn1+n2-2
2 + … + (1+r+r2+…+ rn2)2 εn1+1

2 + r2 13 

(1+r+r2+…+ rn2)2 εn1
2 + r4 (1+r+r2+…+ rn2)2 εn1-1

2 +…)] 14 

= σε2 + (1+r)2 · σε2 + (1+r+r2)2 · σε2 + (1+r+r2+r3)2 · σε2 + … + (1+r+r2+…+ rn2)2/ (1-r2) · σε2 15 

 = {n2 + 2 (n2-1) r + 2 (n2-2) r2 + 2 (n2-3) r3 + … + 2 (1) rn2-1} · σε2 / (1-r2) 16 

≈ {n2 + 2 n2 r / (1-r)} · σε2 / (1-r2) 17 

 = n2 · (1+r) / (1-r) · σε2 / (1-r2) 18 

 = σε2 / (1-r2) · n2 · cf 19 

 20 

Because of the sufficiently large number of n2 in this study (108 months from 1997 to 2005), the 21 

variance of the CUSUM residuals approaches σε2 / (1-r2) · n2 · cf. Therefore, the variance of the 22 

CUSUM is calculated as 23 

 24 

VAR{cumulative predicted-[O3]t′}  25 

 26 

= VAR{CUSUM residuals} + n2
2 · VAR{mean estimate} + [Σ2 (t – τ1)]2 · VAR{trend 27 

estimate} 28 
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 1 

≈ cf · σu
2 {n2 + n2

2 / n1 + [Σ2 (t – τ1)]2 / Σ1(t – τ1)2}     (B2′) 2 

 3 

In the above derivations, we neglect uncertainty in an estimated r. Compared to the CUSUM 4 

variances without an AR(1) term, (B2′) now shows that the variances increase by a correction 5 

factor, (1+r)/(1-r).  6 

 7 
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