Tuning in to April meteor showers
| Tweet | ![]() |

Space Science News home
Tuning in to April Meteor Showers
Amateur astronomers capture radio echoes from fiery meteors in April 99
Apr. 27, 1999:
When the Lyrid meteor shower reached its peak on April 22, much of North America
was overcast, frustrating stargazers who hoped to view
the first major meteor shower of the 1999 observing season.
Michael Boschat, an amateur astronomer from Halifax, Nova Scotia, was
clouded out, too, but he observed over 150 meteors -- by listening
to his radio.
This year many amateur radio operators
tuned into the Lyrids using a technique called
radio forward scattering. When fast-moving
meteoroids strike Earth's atmosphere they
heat and ionize the air in their path. The luminous ionized
trails are not only visually
striking -- they also reflect radio waves.
During a major meteor shower, radio signals from TV stations,
RADAR facilities, and AM/FM transmitters are constantly bouncing
off short lived meteor trails. For those who know how to listen, it's easy to
hear the echoes.
Right: This photo of a Geminid meteor
streaking through the Big Dipper was captured by Yukihiro Kida in Hamada, Japan at 16:14 UT on Dec.13, 1998.
The colorful tail consists of ionized air that can reflect
radio waves from TV, radar, and AM/FM radio transmitters. Click
to view a larger image including the complete Big Dipper asterism.
Boschat, who monitored an array of Channel 6 TV transmitters at 83.25 MHz,
counted a maximum of 46
detections per hour at 11 UT on April 22, 1999, compared to visual
spotters around the world
who observed fewer than 5-10 Lyrids per hour on the same evening.
It was a meager year for visual Lyrid meteors,
but radio Lyrids were relatively plentiful.
Left: Artist's concept of radio meteor
observing. Meteor trains reflect transmissions from stations that are
over the horizon, and normally impossible to detect. Whenever a meteor
passes by with the correct geometry, listeners hear a brief
"ping" on the receiver's loudspeaker.
more information
from the North American Meteor Network.
One of the advantages of radio observing is that meteors
can be detected when skies are cloudy, or even during daylight.
In fact, the International Meteor Organization lists a dozen "daylight
meteor showers" that peak after sunrise and are
monitored almost exclusively by radio observations. The most
intense of these
is the Arietids which peak each year around June 8. They usually
produce 60 to 100 radio detections per hour.
Radio observing has some advantages at night, too.
The human eye can only see shooting stars brighter than 6th magnitude,
but radio methods can detect meteors that are at least 5 times dimmer.
That's the main reason radio observers detected more Lyrids than their visual counterparts.
![]() Sign up for our EXPRESS SCIENCE NEWS delivery |
Another meteor enthusiast, Stan Nelson of Roswell, NM, captured
this radar echo from a sporadic meteor
on April 11, 1999. He used an ICOM R8500 communications receiver to
monitor 217 MHz transmissions from the Navy Space Surveillance Radar
located in Lake Kickapoo, TX. He was observing about one hour after sunset
in support of the NASA Meteor Balloon project, at a time when the
meteor rate was expected to be low. Nevertheless, he was rewarded
with a bright visual meteor that also registered on his radio setup.
A frequency-time plot of Nelson's data shows that he detected
one echo from ionized air around the fast-moving meteoroid
followed by a second echo from the residual meteor train left behind after the
meteoroid distintegrated.
Left: Stan Nelson's
radio meteor echo looks like an "L" in this frequency-time plot.
The slanted, nearly vertical piece is the reflection
from ionized air around the rapidly-moving meteoroid
(sometimes called the "head" of the meteor). The doppler-shifted
frequency of
the reflection changes rapidly because the meteoroid moves across
the line-of-sight of the transmitter at high speed.
After the meteoroid disintegrates, all that remains is a slowly moving trail of
ionized air. The velocity of the residual trail is low, typically no more than
0.02 km/s, compared to 30 - 70 km/s for the meteoroid. The reflection from the
slowly moving gas does not experience a significant doppler shift, so it appears as a
horizontal line (the bottom of the "L") in the dynamic spectrum.
How it's Done
If you're interested in detecting radio meteors, the
procedures are relatively simple. You'll need a good
commercial radio receiver and an aerial. Although meteor trains
can reflect radio waves at almost any frequency,
the best frequencies to try are usually between 50 and 120 MHz.
Many observers use a common FM radio tunable between 88 and 108 MHz and
a Yagi FM/TV antenna.
During a meteor shower tune your receiver
to a distant transmitter
between 200 and 1000 miles away. Commercial radio stations, TV stations,
and radar transmitters are all suitable if located at the correct distance.
Under normal circumstances
the transmitter should be difficult or impossible to detect, but when
a meteor intervenes the signal hops over the horizon and
a brief fragment of the transmission can be heard. Depending on
the type of the transmitter it might sound like a tone, a bit of music or voice, or simply
noise. Contact lasts for as long as the meteor train persists, usually from 100 milliseconds to
a few seconds.
Stan Nelson's echo, above, was obtained at 217 MHz which is usually considered to be a poor frequency for meteor observations. However, the tremendous power of the Naval Space Surveillance radar (NAVSPASUR) more than compensates for its less-than-optimum transmission frequency. NAVSPASUR is an excellent transmitter for meteor observers across the southern United States. For more information about meteor observing with NAVSPASUR, please see the Dec. 1998 Science@NASA article The Ghosts of Fireballs Past. To learn more about radio meteor observing in general, see the North American Meteor Network radio meteor tutorial.
The author wishes to thank Shlomi and Anna Eini as well as members of the North American Meteor Network including Mark Davis, Kim Youmans, Wes Stone and others for their reports of visual meteor sightings on April 22, 1999 during the nominal peak of the Lyrids meteor shower.Web Links
The Radiometeor Audio Gallery - from the American Meteor Society
The daytime Arietids - From Gary Kronk's Comets & Meteors Web Site
The Lyrids - From Gary Kronk's Comets & Meteors Web Site
North American Meteor Network - radio meteor tutorial
North American Meteor Network - April 99 Newsletter featuring information about the Lyrids
North American Meteor Network - home page
Leonids Live! -site of the live webcast of the 1998 Leonids
Related Stories:
A Wild Ride to the Stratosphere in Search of Meteors
-- Apr. 14, 1999. The payload from the NASA Meteor Balloon has been recovered.
Meteor Balloon set for Launch
-- Apr. 9, 1999. NASA scientists prepare to launch a weather balloon designed to capture
micrometeoroids in the stratosphere.
Leonid
Sample Return Update
-- Apr. 1, 1999. Scientists will describe initial results from
a program to catch meteoroids in flight at the NASA/Ames Leonids
Workshop April 12-15, 1999.
The
Ghost of Fireballs Past -- Dec. 22, 1998. RADAR echoes
from Leonid and Geminid meteors.
Bunches
& Bunches of Geminids -- Dec. 15, 1998. The Geminids
continued to intensify in 1998
The
1998 Leonids: A bust or a blast? -- Nov. 27, 1998. New
images of Leonid fireballs and their smokey remnants.
Leonids
Sample Return payload recovered! -- Nov. 23, 1998. Scientists
are scanning the "comet catcher" for signs of Leonid
meteoroids.
Early
birds catch the Leonids -- Nov. 19, 1998. The peak of
the Leonid meteor shower happened more than 14 hours earlier
than experts had predicted.
A
high-altitude look at the Leonids -- Nov. 18, 1998. NASA
science balloon catches video of 8 fireballs.
The
Leonid Sample Return Mission -- Nov. 16, 1998. NASA scientists
hope to capture a Leonid meteoroid and return it to Earth.
Great
Expectations: the 1998 Leonid meteor shower -- Nov. 10,
1998. The basics of what the Leonids are and what might happen
on November 17.
Headlinesreturn to Space Science News Home
|
For more information, please contact: Dr. John M. Horack , Director of Science Communications |
Author: Dr. Tony Phillips Curator: Linda Porter NASA Official: Ron Koczor |

