Polar Lander Mission Overview
| Tweet | ![]() |

Space Science News home
Mars Polar Lander Nears Arrival
NASA returns to the surface of Mars on December 3
with a spacecraft that will land on the frigid, windswept steppe
near the edge of Mars' south polar cap.
Dec. 1, 1999: NASA returns to the surface of Mars on December
3 with a spacecraft that will land on the frigid, windswept steppe
near the edge of Mars' south polar cap. Piggybacking on the lander
are two small probes that will smash into the Martian surface
to test new technologies.
Right: Artist's concept of Mars
Polar Lander. Image credit: JPL.
The lander mission is the second installment in NASA's long-
term program of robotic exploration of Mars, which was initiated
with the 1996 launches of the currently orbiting Mars Global
Surveyor and the Mars Pathfinder lander and rover, and included
the recently lost Mars Climate Orbiter.
Mars Polar
Lander will advance our understanding of Mars' current water
resources by digging into the enigmatic layered terrain near
one of its poles for the first time. Instruments on the lander
will analyze surface materials, frost, weather patterns and interactions
between the surface and atmosphere to better understand how the
climate of Mars has changed over time.
![]() Sign up for our EXPRESS SCIENCE NEWS delivery |
A key scientific objective of the two missions is to determine how the climate of Mars has changed over time and where water, in particular, resides on Mars today. Water once flowed on Mars, but where did it go? Clues may be found in the geologic record provided by the polar layered terrain, whose alternating bands of color seem to contain different mixtures of dust and ice. Like growth rings of trees, these layered geological bands may help reveal the secret past of climate change on Mars and help determine whether it was driven by a catastrophic change, episodic variations or merely a gradual evolution in the planet's environment.
Today the Martian atmosphere is so thin and cold that it does not rain; liquid water does not last on the surface, but quickly freezes into ice or evaporates into the atmosphere. The temporary polar frosts which advance and retreat with the seasons are made mostly of condensed carbon dioxide, the major constituent of the Martian atmosphere. But the planet also hosts both water-ice clouds and dust storms, the latter ranging in scale from local to global. If typical amounts of atmospheric dust and water were concentrated today in the polar regions, they might deposit a fine layer every year, so that the top meter (or yard) of the polar layered terrains could be a well-preserved record showing 100,000 years of Martian geology and climatology.
Educators!![]() Please visit Thursday's Classroom for lesson plans and activities related to exploration of the planet Mars. |
Like Mars Pathfinder, Polar Lander will dive directly into the Martian atmosphere, using an aeroshell and parachute scaled down from Pathfinder's design to slow its initial descent. The smaller Polar Lander will not use airbags, but instead will rely on onboard guidance and retro-rockets to land softly on the layered terrain near the south polar cap a few weeks after the seasonal carbon dioxide frosts have disappeared. After the heat shield is jettisoned, a camera will take a series of pictures of the landing site as the spacecraft descends. These are recorded onboard and transmitted to Earth after landing.
As the lander approaches Mars about 10 minutes before touchdown, the two Deep Space 2 microprobes are released. Once released, the projectiles will collect atmospheric data before they crash at about 200 meters per second (400 miles per hour) and bury themselves beneath the Martian surface. The microprobes will test the ability of very small spacecraft to deploy future instruments for soil sampling, meteorology and seismic monitoring. A key instrument will draw a tiny soil sample into a chamber, heat it and use a miniature laser to look for signs of vaporized water ice.
Left: Prior to entry, two 3.5 kg
penetrators provided by JPL's New Millennium Deep Space Project
will be released. The probes will enter the atmosphere and impact
the Martian surface approximately 100 km uprange of the lander.
Each probe will consist of a forebody, which will penetrate up
to a meter into the Martian soil, and an aftbody, which will
remain on the surface. The forebody contains acceleration sensors
and a water experiment that will collect a small quantity of
soil and heat it to release water. The aftbody contains electronics
and an antenna to be used for one-way communication with the
Mars Global Surveyor Orbiter. The probes will be powered by non-rechargeable
batteries and are expected to survive for two days. Sarah Gavit
of JPL is the New Millennium Microprobe program manager and Suzanne
Smrekar of JPL is the New Millennium project scientist. About 60 kilometers (35 miles) away from the microprobe impact sites, Mars Polar Lander will dig into the top of the terrain using a 2-meter-long (6 1/2-foot) robotic arm. A camera mounted on the robotic arm will image the walls of the trench, viewing the texture of the surface material and looking for fine- scale layering. The robotic arm will also deliver soil samples to a thermal and evolved gas analyzer, an instrument that will heat the samples to detect water and carbon dioxide. An onboard weather station will take daily readings of wind temperature and pressure, and seek traces of water vapor. A stereo imager perched atop a 1.5-meter (5-foot) mast will photograph the landscape surrounding the spacecraft. All of these instruments are part of an integrated science payload called the Mars Volatiles and Climate Surveyor.
Right: Mars Polar Lander's primary
landing site at 76 degrees south latitude and 195 degrees west
longitude near the Martian south pole. The carbon dioxide polar
cap is outlined in white. Image credit: Dr. David A. Paige (UCLA).
For more information and images see the
Mars Polar Lander home page. Also onboard the lander is a light detection and ranging (LIDAR) experiment provided by Russia's Space Research Institute. The instrument will detect and determine the altitude of atmospheric dust hazes and ice clouds above the lander. Inside the instrument is a small microphone, furnished by the Planetary Society, Pasadena, CA, which will record the sounds of wind gusts, blowing dust and mechanical operations onboard the spacecraft itself.
The lander is expected to operate on the surface for 60 to 90 Martian days through the planet's southern summer (a Martian day is 24 hours, 37 minutes). The mission will continue until the spacecraft can no longer protect itself from the cold and dark of lengthening nights and the return of the Martian seasonal polar frosts.
Mars Polar Lander and Deep Space 2 are managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics Inc., Denver, CO, is the agency's industrial partner for development and operation of the orbiter and lander spacecraft. JPL designed and built the Deep Space 2 microprobes. JPL is a division of the California Institute of Technology, Pasadena, CA.
Images of the landing site and additional information about Mars Polar Lander are available at the following Web site: http://mars.jpl.nasa.gov/msp98/lander/
Additional information about Deep Space Two is available at the following Web site: http://nmp.jpl.nasa.gov/ds2/
JPL manages Mars Polar Lander and the New Millennium Program for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA.Web Links
MARS POLAR LANDER TO ARRIVE ON SMOOTH, LAYERED TERRAIN - NASA/JPL Press Release
MarsPolarLander.com - A nice overview of Mars Polar Lander and the mission's science themes from UCLA
Mars Global Surveyor - mission home page at NASA/JPL
Related Stories:
Unearthing Clues to Martian Fossils
-- The hunt for ancient life on Mars is leading scientists to
an otherworldly place on Earth called Mono Lake. June 11, 1999
NASA Science News
The Red Planet in 3D --
New data from Mars Global Surveyor reveal the topography of Mars
better than many continental regions on Earth. May 27, 1999 NASA
NASA Science News
Search for life on Mars will start
in Siberia -- Russian and NASA scientists will look for
life forms in the inhospitable realm of Siberian permafrost.
May 27, 1999 NASA Science News
Stormy weather
on Mars -- During the recent close approach of Mars to
Earth, NASA's Hubble Space Telescope spotted a gigantic storm
swirling near the Red Planet's north pole. May 19, 1999 NASA
NASA Science News
Mars unveils
a magnetic personality -- Plate tectonics on the Red
Planet might have important consequences for ancient Martian
life. Apr 30, 1999 NASA Science News
Plate tectonics on Mars?
-- Magnetic stripes on the surface of Mars are similar to fields
in the sea floors of Earth. Apr 29, 1999 NASA Science News
A close encounter with the Red
Planet -- Mars makes its closest approach to Earth in
1999. Apr 23, 1999 NASA Science News
A new face
on Mars has scientists smiling -- MGS beams back pictures
of the "Happy Face Crater". Mar. 12, 1999 NASA Space
Science News
Headlinesreturn to Space Science News Home
|
For more information, please contact: Dr. John M. Horack , Director of Science Communications |
Editor: Dr.
Tony Phillips Curator: Linda Porter NASA Official: Frank M. Rose |


