It takes more than one kind of telescope to see the light
Space Science News home
It takes more than one kind of telescope to see the
light
Why we need different types of telescopes
to look at outer space

radio
infrared
visual
X-ray
gamma ray
Different types of telescopes usually don't take simultaneous readings. Space is a dynamic system, so an image taken at one time is not necessarily the precise equivalent of an image of the same phenomena taken at a later time. And often, there is barely enough time for one kind of telescope to observe extremely short-lived phenomena like gamma-ray bursts. By the time other telescopes point to the object, it has grown too faint to be detected.
So why haven't scientists created a telescope designed to look at everything at once?
"Nature has determined the design of our telescopes,"
says Dr. Martin Weisskopf, an astrophysicist at NASA's Marshall
Space Flight Center.
The differing wavelengths among the various energies
create different instrumental needs. This results in dissimilar,
incompatible detecting devices.
Right: The electromagnetic spectrum. Radio has long
wavelengths and low energies, while gamma rays have very short
wavelengths and high energies.
Telescopes rely on the interaction between energy and matter. The atomic matter that forms the telescope has to somehow interpret the energy emitted from astronomical objects. This energy is in the form of electromagnetic waves. Although the first telescope was created 400 years ago, we didn't have a complete picture of the electromagnetic spectrum until the early part of this century. As our knowledge of physics improves, scientists are able to develop increasingly superior telescopes. But as the technology advances and becomes more specialized, differences among telescope designs become more pronounced
The Development of Telescopes
Most of the universe is invisible to us because we only see
the visible light portion of the electromagnetic spectrum. When
most people think of telescopes they think of visible light,
or optical, telescopes.
When the first optical telescope appeared in the 1570s, the
design was simple - one concave and one convex lens fitted inside
a tube. The tube acted as a receiver, or 'light bucket'. The
lenses bent, or refracted, the light as it passed through the
glass and thus made the scene appear 3 to 4 times larger. Galileo
improved upon the design and by 1609 had developed a 20-power
refracting telescope. Galileo made the telescope famous when
he discovered the valleys and mountains of the moon and spotted
four of Jupiter's satellites.
Left: Galileo Galilei (1564-1642), Italian astronomer,
mathematician and physicist.
The glass lenses in the Galileo telescope weren't very clear, however - they were full of little bubbles and had a greenish tinge due to the iron content of the glass. Also, the shape of the glass lenses gave the field of view very fuzzy edges.
The magnification of Galileo's telescope could only be improved
by focusing the light farther behind the primary lens, which
resulted in longer and longer telescopes. But once
telescopes reached 140 feet in length
they became almost useless for observation. It was impossible
to keep the lenses properly aligned at such long lengths. Longer
telescopes also required larger lenses, and after a lens reached
1 meter (3.28 ft.) in diameter it would deform, sagging under
its own weight.
Right: Johannes Hevelius' 150-ft. telescope (Machina
Coelestis, 1673). Reprinted with permission by the Royal Astronomical
Society, London.
Isaac Newton invented the first reflecting telescope in
1671. By using a curved mirror to reflect and focus the light
inside the tube, he was able to reduce the length of the telescope
dramatically. The reflecting telescope solved another problem
inherent in the refracting telescope: chromatic aberration.
In 1672, Newton
described how white light is actually a mixture of
colored light. Each color has its own degree of refraction, so
curved lenses split white light into the colors of the spectrum.
This chromatic aberration caused central images in refracting
telescopes to be surrounded by rings of different colors. Planets
seen through a refracting telescope would appear to be encircled
by a rainbow.
Left: Sir Isaac Newton (1642-1727), English mathematician
and physicist.
By 1730, Newton's reflecting telescope had caught on with
the scientific community. Even today, large optical telescopes
are
based
upon Newton's basic design. Yet another bonus of Newton's reflecting
telescope is that it can also be used to study ultraviolet and
infrared light. The Hubble Space Telescope, famous for its stunning
optical images of the universe, also works in the ultraviolet
and infrared parts of the spectrum.
 But it wasn't until the 1930s that astronomers even
began looking for other parts of the electromagnetic spectrum.
Karl Jansky inadvertently discovered galactic emissions of radio
waves in 1933. Working at Bell Telephone Laboratories, Jansky
was trying to find what caused short-wave radio interference
in Trans-Atlantic communications. By building a rotating radio
telescope to look at the
horizon, he eventually discovered that most of the static resulted
from engine ignition noise and distant lightning storms. But
Jansky also discovered that some radio noise was coming from
the center of the Milky Way Galaxy.
Left: The "Jansky Antenna" doesn't look much like modern aerials, i.e., TV antennas or satellite dishes, because it was designed to receive shortwave signals coming over the horizon.
Like optical telescopes, radio telescopes have reflectors
and receivers. Most radio telescopes need to be large in order
to accommodate radio's longer wavelengths and lower energies.
Resolution is also a factor:
low-frequency radio waves would be unfocused and fuzzy
in smaller telescopes. Radio telescopes also need to be large
in order to overcome the radio noise, or "snow," that
naturally occurs in radio receivers. We generate a large amount
of noise on Earth as well, so smaller telescopes would lose some
astronomical radio signals amid our daily production of rock
music, television broadcasts and cellular phone calls. An example
of a modern radio telescope is The Very Large Array in New Mexico
(right), composed of 27 antennas electronically combined to give
the resolution of an antenna 36 kilometers (22 miles) across.
Radio and optical telescopes can be used on Earth, but some resolution is lost due to Earth's atmosphere. By viewing from the other side of the sky, the Hubble Space Telescope allows astronomers to see the universe without the distortion and filtering that occurs as light passes through the Earth's atmosphere.
Infrared and ultraviolet light are affected more dramatically
by the Earth's atmosphere. Their telescopes must therefore always
be positioned high above the ground or in space.
Infrared telescopes are placed on mountaintops,
far above the low-lying water vapor that interferes with infrared
light.
Left: The NASA Infrared Telescope Facility 3.0 meter
telescope at the summit of Mauna Kea, Hawaii. Photo courtesy
of Ernie Mastroianni.
Ultraviolet telescopes have to be placed even higher than infrared telescopes. The Earth's stratospheric ozone layer, located 20 to 40 kilometers above the Earth's surface, blocks out UV wavelengths shorter than 300 nanometers. By the 1940s, scientists were launching rockets with rudimentary UV detectors onboard.
The Earth's atmosphere scatters or absorbs high-energy radiation, protecting us from the damaging effects of UV, X-rays and gamma rays. The atmosphere does such a good job that telescopes designed to detect these portions of the electromagnetic spectrum have to be positioned outside the atmosphere.
Studies of astronomical objects in high energy X-rays and
gamma rays began in the early 1960s. Although high altitude balloons
and rockets can provide X-ray and gamma ray data, the best results
come from satellites orbiting completely outside the Earth's
atmosphere. NASA's first X-ray telescope was launched from Kenya
on Dec. 12, 1970. Because this date was the 7th anniversary of
Kenya's independence, the satellite was named Uhuru (Swahili
for "freedom").
Left: X-rays
can be reflected using a combination of paraboloidal mirrors
and hyperboloidal mirrors. This is the arrangement of mirrors
in the Chandra X-ray Observatory, scheduled for launch in July,
1999.
X-ray telescope mirrors are coated with gold or other metals; Uhuru's mirrors were coated with beryllium, for instance. The mirrors have shallow angles of reflection because X-rays are so short they only reflect at angles almost parallel to the rays themselves. At steeper mirror angles the rays won't reflect - instead they will penetrate the mirror like a bullet embedding itself in a wall.
Because
gamma rays are even shorter than X-rays, there is no way to prevent
them from passing right through a detection device. Since mirrors
can't be used to focus gamma rays, a method had to be developed
for detecting gamma rays indirectly.
Right: Illustration of a crystal gamma-ray detector.
The electrons expelled by gamma-rays act like a trigger on an
alarm, letting the detector know when gamma rays are passing
through.
The
American
physicist Arthur Holly Compton discovered that gamma rays would
expel electrons as they moved through a detector. Modern gamma-ray
detectors use crystals or liquids that are triggered by these
expelled gamma-ray electrons to record the passing gamma rays
as flashes of light. The first gamma-ray satellite, Explorer
XI, was launched in 1961, a year before Compton's death. The
Compton Gamma Ray Observatory, launched in 1991 and still orbiting
the Earth today, was named in his honor.
Left: Arthur Holly Compton (1892-1962) won the 1927 Nobel
Prize in physics for his work with gamma rays.
Physics 101
![]() Sign up for our EXPRESS SCIENCE NEWS delivery |
"Telescopes are designed with one goal in mind: to build
a device that interacts with radiation coming from the cosmos,"
says Dr. Tony Phillips, a radio astronomer now consulting for
the Science@NASA web site.
Different energy wavelengths interact with matter in different
ways. Radio waves will reflect from a metal that X-rays pass
right through. These differences in the interaction between matter
and energy have resulted in telescopes designed to only accommodate
very specific wavelengths.
Right: A mosaic of different astronomical phenomena
at various wavelengths.
Phillips says that telescopes designed for different parts of the electromagnetic spectrum often look dramatically unlike one another. "Low-frequency radio telescopes look wildly different from microwave telescopes, even though both study the radio portion of the spectrum," he states. "And low-frequency radio telescopes don't bear the remotest resemblance to X-ray telescopes."
With present technology, it is not possible to build one telescope able to efficiently survey the entire electromagnetic spectrum. Scientists follow established laws of physics in building telescopes, and an all-wave telescope would have to break those laws.
"That's the wall that keeps us from building one device for everything," says Phillips.
Because it is not currently possible to create an all-wave telescope, the next choice is to create a device that uses many telescopes at once.
"What we want is a Christmas tree," says Weisskopf.
"What we want is a system that can look at all of the emissions
simultaneously." Matched telescopes could be aligned to
look at
the same thing at the same time. A device containing
all the different types of telescopes would necessarily have
to be a satellite so that X-rays and gamma rays could be detected.
Left: If an all-wave telescope were made, it would be on the wish list for both professional and amateur observers. On the tree, the planets are represented in order of their distance from the Sun (at the top).
Several multi-wavelength observatories have already flown
- Skylab, the Solar Maximum Mission, and the Solar and Heliospheric
Observatory (SOHO). The Skylab space station in particular is
hailed as a good model for conducting multi-wavelength studies
in space. Launched in 1973, Skylab had eight coordinated telescopes
located on its Apollo Telescope Mount (ATM). The eight telescopes
studied the Sun's spectrum from X-ray almost down to infrared,
all with very high quality resolution. Skylab was coordinated
with ground-based astronomers as well.
Whenever ground observers detected active
solar prominences, flares, or mass ejections, they would notify
the astronauts, who would then point their telescopes to record
the event.
Right: Skylab space station orbiting Earth in 1973.
The problem in developing this type of technology today, says Weisskopf, is two-fold. Money is the most immediate impediment. It would cost several billion dollars just to create a high quality combined optical and X-ray telescope.
More difficult to tackle is the social mind-set of scientists. Scientists are often trained to specialize; to study only one segment of the electromagnetic spectrum. Hence we have many X-ray astronomers, radio astronomers, and so on, with fewer scientists following a multi-wavelength approach. Facilities and instruments are built to study only portions of the spectrum, rather than phenomena as a whole. There are no instruments designed to just study globular clusters, for instance.
Phillips agrees that wavelength specialization is prevalent in the scientific community, but he believes this attitude is changing. Up until the last thirty years, many astronomers built their own telescopes, thereby focusing all their attention on one portion of the spectrum. Today, engineers build the telescopes based on what the astronomers want to study. Because astronomers no longer build the telescopes, they are more willing to look at other wavelengths.
"Astronomers
are now becoming more multi-wave literate in order to solve astrophysical
puzzles," says Phillips.
Because specialized telescopes are so well developed and are
still strongly supported by scientists, the most logical approach
would be to coordinate the telescopes already in existence. This
happened recently due to an accident with satellite equipment.
The Compton Gamma Ray Observatory (left) once stored data on
its satellite tape recorders and dumped data about gamma-ray
bursts down to ground stations several times each day. However,
in 1992 the tape recorders failed. Since there was no way to
save the data, it had to be transmitted instantly. The bright
side of this accident was that this instant transmission of information
made it possible for other types of telescopes to have immediate,
'real-time' burst alerts. On Jan. 23, 1999, gamma-ray and visible
light robotic telescopes coordinated an observation of a gamma-ray
burst. When the gamma-ray burst was detected, the GRO quickly
sent the information out through the Internet. The Robotic Optical
Transient Search Experiment (ROTSE), a visible light
telescope, used this information to lock
on to the burst 22 seconds after it began. This allowed scientists
to see for the first time a gamma-ray burst explosion in the
visible light portion of the spectrum.
Right: The Robotic and Optical Search Experiment (ROTSE),
operated by Carl Akerloff at the University of Michigan.
"You want to ask, 'Why didn't everyone do it this way from the beginning?'" Weisskopf grins. "It's because everyone got in their own cars and started driving, and many were just following the cars in front of them."
| Web Links |
Goddard Space Flight Center - a fun and easy tutorial about the high energy portion of the electromagnetic spectrum. The Multiwave Milky Way website - educational material from Goddard Space Flight Center. The Building of the Chandra X-ray Observatory - (formerly known as AXAF - this is a story we posted back in 1997, and has additional illustrations.) Chandra X-ray Observatory - A history of X-ray astronomy. NASA Education - basics about the entire electromagnetic spectrum. More Space Science Headlines - NASA research on the web NASA's Office of Space Sciencepress releases and other news related to NASA and astrophysics |
Although Phillips says an all-wave telescope is not currently a topic of serious discussion in the scientific community, satellites with coordinated telescopes have worked well in the past. Perhaps the success of Skylab and other multi-wavelength observatories, combined with the happy accident of the GRO, will inspire new and revolutionary ideas about telescopes.
More Feature Storiesreturn to Space Science News Home
Author: Leslie
Mullen
Curator: Linda Porter
NASA Official: Gregory
S. Wilson
