Skip to Main Content

Universe Older Than Previously Thought

Pin it


March 21, 2013: Europe's Planck spacecraft has obtained the most accurate and detailed map ever made of the oldest light in the universe. The map results suggest the universe is expanding more slowly than scientists thought, and is 13.8 billion years old, 100 million years older than previous estimates. The data also show there is less dark energy and more matter in the universe than previously known.

"Astronomers worldwide have been on the edge of their seats waiting for this map," said Joan Centrella, Planck program scientist at NASA Headquarters in Washington. "These measurements are profoundly important to many areas of science, as well as future space missions. We are so pleased to have worked with the European Space Agency on such a historic endeavor."

The newly estimated expansion rate of the universe, known as Hubble's constant, is 67.15 plus or minus 1.2 kilometers/second/megaparsec. A megaparsec is roughly 3 million light-years. This is less than prior estimates derived from space telescopes, such as NASA's Spitzer and Hubble, using a different technique. The new estimate of dark matter content in the universe is 26.8 percent, up from 24 percent, while dark energy falls to 68.3 percent, down from 71.4 percent. Normal matter now is 4.9 percent, up from 4.6 percent.

Planck (splash)
This map shows the oldest light in our universe, as detected with the greatest precision yet by the Planck mission. Image credit: ESA and the Planck Collaboration. Video

Planck is a European Space Agency mission. NASA contributed mission-enabling technology for both of Planck's science instruments, and U.S., European and Canadian scientists work together to analyze the Planck data.

The map, based on the mission's first 15.5 months of all-sky observations, reveals tiny temperature fluctuations in the cosmic microwave background, ancient light that has traveled for billions of years from the very early universe to reach us. The patterns of light represent the seeds of galaxies and clusters of galaxies we see around us today.

Auroras Underfoot (signup)

"As that ancient light travels to us, matter acts like an obstacle course getting in its way and changing the patterns slightly," said Charles Lawrence, the U.S. project scientist for Planck at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "The Planck map reveals not only the very young universe, but also matter, including dark matter, everywhere in the universe."

Planck launched in 2009 and has been scanning the skies ever since, mapping the cosmic microwave background, the afterglow of the theorized big bang that created our universe. This relic radiation provides scientists with a snapshot of the universe 370,000 years after the big bang.

The cosmic microwave background is remarkably uniform over the entire sky, but tiny variations reveal the imprints of sound waves triggered by quantum fluctuations in the universe just moments after it was born. These imprints, appearing as splotches in the Planck map, are the seeds from which matter grew, forming stars and galaxies. Prior balloon-based and space missions learned a great deal by studying these patterns, including NASA's Wilkinson Microwave Anisotropy Probe (WMAP) and the Cosmic Background Explorer (COBE), which earned the 2006 Nobel Prize in Physics. Planck is the successor to these satellites, covering a wider range of light frequencies with improved sensitivity and resolution.

Planck (improvement)
This graphic illustrates the evolution of satellites designed to measure ancient light leftover from the big bang that created our universe 13.8 billion years ago. Planck has created the sharpest all-sky map ever made of the universe's cosmic microwave background, revealing light patterns as small as one-twelfth of a degree on the sky.

The age, contents and other fundamental traits of our universe are described in the so-called "Standard Model" of cosmology, which has been developed over the years by astronomers. These new data have allowed researchers to test and improve the Standard Model with the greatest precision yet. At the same time, some curious features are observed that don't quite fit with the simple picture. For example, the model assumes the sky is the same everywhere, but the light patterns are asymmetrical on two halves of the sky, and there is a spot extending over a patch of sky that is larger than expected.

"On one hand, we have a simple model that fits our observations extremely well, but on the other hand, we see some strange features which force us to rethink some of our basic assumptions," said Jan Tauber, the European Space Agency's Planck project scientist based in the Netherlands. "This is the beginning of a new journey, and we expect our continued analysis of Planck data will help shed light on this conundrum."

Complete results from Planck, which still is scanning the skies, will be released in 2014.


 Production editor: Dr. Tony Phillips | Credit: Science@NASA

More Information

NASA's Planck Project Office is based at JPL.

More information is online at http://www.nasa.gov/planck, http://planck.caltech.edu and http://www.esa.int/planck .