Water & Energy Cycle

The Water and Energy Cycle Focus Area (WECFA) aims to develop capabilities to improve observations, model simulations, and projections of the water and energy cycles, including extreme weather events, at diverse spatial scales (local, regional, global). This scope aligns with research initiatives of national and international programs, such as the Global Energy and Water EXchanges (GEWEX) project and the interagency water group of the U.S. Global Change Research Program.

In brief, the WECFA seeks to enhance our understanding of the transfer and storage of water and energy in the Earth system. For the water cycle, the emphasis is on atmospheric and terrestrial stores, including seasonal snow cover. Permanent snow and ice, as well as ocean dynamics are studied within the Climate Variability and Change Focus Area. WECFA aims to resolve all fluxes of water and the corresponding energy fluxes involved with the water changing phase. Understanding, observing, and modeling clouds and their interaction with energy fluxes is accomplished in collaboration with three other Focus Areas (Atmospheric Composition, Climate Variability and Change, and Weather).

Research Questions

The focus area addresses the following overarching questions:

  • How will water cycle dynamics change in the future?
  • How are global precipitation, evaporation, and the cycling of water changing?
  • What are the effects of clouds and surface hydrologic processes on Earth’s climate?
  • How are variations in local weather, precipitation, and water resources related to global climate variation?


Research Programs

Terrestrial Hydrology

The Terrestrial Hydrology program (THP) uses NASA’s unique view from space to investigate hydrologic processes linked with runoff, land-atmosphere coupling, and storage of terrestrial water. Its principal objective is to develop new remote sensing based assessments of water for earth system science and water resources management. THP promotes the development of hydrologic remote sensing theory, new hydrologic satellite missions, hydrologic remote sensing field experiments, and the interface of hydrology with other disciplines, such as ecology and/or environmental modeling. Particular emphasis is placed on the application of satellite-based, remotely sensed data for characterizing, understanding, and predicting the terrestrially linked components of the hydrologic cycle and the dynamics of large-scale river basins.

NASA Energy and Water cycle Study (NEWS)

In 2003, NASA established the NASA Energy and Water cycle Study (NEWS), the ultimate goal of which is a breakthrough improvement in the nation's energy and water cycle prediction capability. NEWS is expected to demonstrate advanced global observation, data assimilation, and improved representation of the water and energy cycles in climate models, better prediction systems to more effectively quantify the hydrologic consequences of climate change and produce useful seasonal and longer-range hydrologic predictions.

Associated Earth Science Division Missions, Instruments, and Data Sets

The table below lists all Earth missions that are relevant to the Water and Energy Cycle Focus Area in all phases. Learn more about the mission phases: operating, under development, under study, and past.

Satellite Missions SMAP
LandSAT 8
Suborbital Investigations:
P-band radar (AirMOSS)
UAVSAR (L-band)
Satellite Missions NISAR
Satellite Missions  
Satellite Missions AQUARIUS
Suborbital Investigations SMAPVEX 2015


ROSES Solicitations

For solicited program elements relevant to Water & Energy Cycle, search for and view open, closed, and future Research Opportunities in Space and Earth Sciences (ROSES) NASA Research Announcements (NRAs) on the NASA Solicitation and Proposal Integrated Review and Evaluation System (NSPIRES) website.

NASA Distributed Active Archive Center (DAAC) 


Relevant Sites

Topics relevant to Water & Energy Cycle are also being pursued through the following:

NASA Applied Sciences Programs
NASA Center Organizations                 
Interagency/International Activities


Program Managers

Gerald Bawden (Focus Area Lead)
Water & Energy Cycle Program
Terrestrial Hydrology Program

Jared Entin
Water & Energy Cycle Program
Terrestrial Hydrology Program