May 10, 1999

Powerful plants have changed the world

return to NASA Science News

Space Science News home

The Green Party

Powerful Plants Have Changed The World

 May 10, 1999: Biologists conducting Space Shuttle experiments may be one step close

r to shedding light on the biggest power booster on the planet: a protein in green plants called Photosystem I.

A German research team recently presented the results of their Space Shuttle experiment designed to crystallize Photosystem I molecules. According to the researchers, "This experiment has yielded the best data set thus far obtained from Photosystem I crystals."

Right: Photo credit: Department of Energy, Daniel Peck


photosynthesis, the cells in green plants undergo two simultaneous reactions, both of which rely on a separate kind of protein. Photosystem I protein molecules use the trapped energy in sunlight to convert carbon dioxide into carbon and oxygen. This provides the plant food in the form of carbohydrates, lipids, proteins and nucleic acids - the building blocks of life. Photosystem II protein molecules use light energy to split water into hydrogen and oxygen for plant respiration.

Left: The complex protein map of atomic positions in a Photosystem I molecule, from Brookhaven National Laboratory Protein Databank, and Image Library of Biological Macromolecules, Jena, Germany.

Scientists crystallize protein molecules in order to study their complex internal structures. Because the molecules are too small to study directly under a microscope, scientists use X-ray diffraction to get a picture of the molecule.

Shining X-rays through a crystal produces a scattering pattern, which is a type of blueprint. Think of a shadow cast through a picket fence - the shape of the shadow would tell you that the fundamental building block of the fence is a rectangular board. Shining X-rays through a protein crystal indicates the protein's shape, where it's located, and ultimately how it may work.

Left: In the microgravity environment of the Space Shuttle, scientists have shown some improved capability to grow macromolecular crystals with a higher degree of order. Using a process called "X-ray crystallography," they can map the structure of proteins and advance the fundamental understanding of how they work. more information

High quality crystals - composed of ordered and repeating units of a particular protein - are required for X-ray diffraction. Some of the crystals grown in the microgravity conditions of space are more perfectly ordered than crystals grown on Earth. Microgravity can also affect the rate at which the proteins initiate new growth. Space crystals have shown a 10 to 20-fold larger volume compared to the Earth-grown counterparts.

The Photosystem I protein molecule, sometimes called "the Earth's power station," was analyzed by a scientific team representing the Max Volmer Institute for Biophysical Chemistry and Biochemistry in Berlin, Germany. The team reported their results in their Final Report published from the Life and Microgravity Spacelab (LMS) mission. The team hopes these results will give scientists a more detailed knowledge of the Photosystem I molecule's shape, exact atomic positions, and biological functions. And by using the results of the experiments on the space shuttle, scientists can improve the crystallization conditions here on Earth.

Right: Green plants use Photosystem proteins to capture and use energy from sunlight. Photo credit: Department of Energy, Daniel Peck. The Earth's environments - from forests to
grasslands to the oceans - are direct products of the Photosystem protein molecules. From the beginning of life, Photosystem processes in algae completely altered the atmosphere, transforming the carbon dioxide environment into an oxygen-rich one.

Left: Algae in the early Earth's oceans transformed the atmosphere. Photo credit: Department of Energy, David Parsons.

The two Photosystem proteins underlie the Earth's balance between water and heat and between oxygen and carbon dioxide. They ultimately supply the nutrients for almost every living thing on the planet, as well. Most of the organisms on Earth receive their sustenance directly or indirectly from photosynthetic vegetation. Without the Photosystem molecules, life as we know it would cease to exist.

Recent Headlines
December 3: Mars Polar Lander nears touchdown

December 2: What next, Leonids?

November 30: Polar Lander Mission Overview

November 30: Learning how to make a clean sweep in space
The space experiments were performed on ancient organisms called cyanobacteria, formerly known as blue-green algae or blue-green bacteria. As a family, these organisms form the fundamental basis of the entire marine food web and are often called "the grass of the sea." These early ancestors of modern plant cells (chloroplasts) were the first oxygenic organisms to convert light to energy on Earth. The cyanobacterium protein used in the space investigation, from the species Synechococcus elongatus, is found abundantly today. It represents more than half of the total biomass productivity in all open ocean environments and may process up to 50 percent of the excess carbon dioxide greenhouse gasses implicated in the current global warming debate.

Burning carbon fuel such as oil and coal produces most of this excess carbon dioxide. This process currently supplies much of the world's power needs, but the fuel reserves are rapidly running out. Nonpolluting alternative fuel sources are being developed to take the place of oil and coal. In the 1970s, solar power - a clean and unlimited power source - seemed to be the most promising alternative. Harnessing the power of the Sun to power the Earth, however, has been plagued with difficulties. To generate a lot of power, you need extremely large solar panels. And what do you do for power when the sun sets?

Right: A 210-kilowatt crystalline silicon photovoltaic system provides solar power to Sacramento, Calif. Photo credit: Department of Energy/Sacramento Municipal Utility District.
subscription image

Sign up for our EXPRESS SCIENCE NEWS delivery
The Space Shuttle investigation is trying to discover what features of photosynthetic proteins allow for solar energy conversion. While humans have only been developing solar power technology for a few decades, plants have been evolving for billions of years to perfect their photosynthetic technique. By studying how plants accomplish this remarkable feat, scientists hope to someday also develop systems that use light as a power source. Identifying and studying characteristics of the protein's metabolism may someday also be used for applications in pollution prevention and environmental clean-ups. Knowing the Code
Many essential biology questions depend on knowing the structure of proteins and enzymes. By charting their shape, scientists can determine how the molecules work. But these molecules may also change shape when performing important functions, like carrying oxygen in blood hemoglobin. In photosynthesis, there are many energy producing conversion steps from sunlight to plant development and growth.

Some estimates suggest that human biology depends on the action of nearly half a million different enzymes and proteins. But we only have a three-dimensional picture of shape and function for fewer than 1 in 100 of these complex chemicals. Since 1984, the Space Shuttle has carried experiments to determine the structures of large, biologically important molecules. This research has compiled results for a host of human diseases ranging from insulin for the control of diabetes, to the reverse transcriptase enzyme that, when blocked, inhibits HIV infection.

Just as in human cells,
the Photosystem proteins inside a plant cell are translated from amino acids. Amino acids have a 20 letter alphabet for each of the 20 naturally occurring amino acids (shown below as AAs). These amino acids are in turn translated from the complex array of nucleic acids in DNA (coded as the letters A,G,T and C). A description of the molecular code reads like an encrypted message:

AAs =FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = ---M---------------M------------MMMM---------------M------------


Much work remains to be done in uncovering the shape and detailed way the Photosystem power-converting molecules achieve their efficiency. By using the results from space shuttle experiments, someday we may understand how that transformation happens in detail. Such experiments make possible the study of proteins that had once proved too difficult to dissect at the molecular or atomic size.  Life on the Edge Project

A good illustration of how photosynthesis leads to environmental balance is the terrarium. A sealed jar of carefully balanced photosynthesizing organisms can sustain themselves for long periods without exposure to outside material nutrients or gases. Such a microbial terrarium can keep its ecological balance nearly indefinitely without any care or maintenance.

The secret to this self-sufficiency is that green or purple photosynthesizing organisms generate their own source of life from the energy in light. This ability allows them to divide and multiply in a stable manner. NASA's "Life on the Edge" project tests some of the limits to this remarkable behavior. By closing several green biomass mixtures into sealed jars, these organisms are frozen within a deep freezer to a frigid -80 deg C (-112 deg F), temperatures exceeding the coldest winter weather in Antarctica (-44.5 deg C, or -48 deg F). Afterwards, the jars are thawed and opened, and scientists then grow the organisms in a culture to assess their viability. Healthy growing ecosystems have been revived from this ultimate deep freeze.

go to LMS site on Liftoff!
This is one of several stories summarizing results from the 16-day Life and Microgravity Spacelab (LMS), which flew June 20-July 7, 1996, aboard Space Shuttle Columbia (STS-78, at launch, left). It featured 40 scientific investigations from 10 countries. Its record development and cost - each experiment cost about half of most Spacelab experiments - make LMS an example of how future space station missions can control experiments remotely from locations around the globe. LMS results were recently published by NASA (see below). The investigation in this story used the European Space Agency's Advanced Protein Crystallization Facility.

Other LMS stories:

  • Nature's sugar high - Spacelab successfully crystallizes an intensely sweet protein from the African Serendipity Berry that has 3000 times the kick of table sugar - and no calories. 
  • Great Bugs of Fire - Spacelab crystallizes a protein from a very weird, and surprisingly common, volcano-loving bug. Scientists hope to discover how these organisms can survive in such extreme conditions. 
  • Nature's "electronic ink" - Another extremophile - a bacterium which thrives in high-salt conditions - produces a fascinating protein which changes color extremely efficiently. Crystals grown by Spacelab make scientists hopeful that they can understand the biological function and apply it to, for example, artificial retinas for people. 
  • The Green Party--Spacelab crystallizes a protein from ocean algae, called Photosystem I. Scientists demonstrate rejuvenation of deep frozen biology by solar action alone (this story)

Web links 

Join our growing list of subscribers - sign up for our express news delivery and you will receive a mail message every time we post a new story!!!


return to Space Science News Home

For more information, please contact:
Dr. John M. Horack , Director of Science Communications
Authors: Leslie Mullen, Dr. David Noever
Curator: Linda Porter
NASA Official: Ron Koczor