Wandering Mystery Planets
June 29, 2001 -- Astronomers using NASA's Hubble Space Telescope have spotted something extraordinary. Apparently there are planet-sized objects wandering through a distant globular cluster of stars. Unlike the planets in our own solar system, however, these objects are loners -- they have no central star of their own.
Because the findings are so surprising, researchers caution that they must be confirmed by follow-up observations. But if this discovery is verified, it could change the way astronomers think about stars and planets, and how the two are related.
Above: This stylized view shows Hubble peering through globular cluster M22 in search of microlensing "flares" from background stars. Credit: Zolt Levay (STScI) [more]
The unusual objects in question are too dim to be seen directly, even by Hubble. Instead they were detected by the way their gravitational field bends and amplifies light from distant background stars, a technique called "
Right: A schematic diagram of microlensing. Click to enlarge. Credit: Ann Field (STScI)
These microlensing events were unusually brief, indicating that the mass of the intervening object could be as little as 80 times that of Earth. Objects this small have never before been detected by microlensing observations. If these results are confirmed by follow-up Hubble observations, the bodies would be the smallest celestial objects ever seen that are not orbiting a star.
So what are they? Theoretically, planets can be gravitationally torn from their parent stars in the cluster to form a population of wanderers. But, say researchers, that explanation won't work. The planet-sized mystery bodies in M22 could make up as much as 10 percent of the cluster's mass. They are too numerous to have once been parts of normal planetary systems.
What's next? More observations!
Sign up for EXPRESS SCIENCE NEWS delivery |
When a background star is microlensed, it brightens and dims for a length of time depending on the mass, distance, and velocity of the intervening lens. Because lensing objects in M22 are all part of the same cluster, the astronomers know their distance (8,500 light-years) and their approximate velocity. As a result, it's possible to estimate the mass of such lenses from the light curve of the background star.
The six brief events Sahu's team detected were even shorter than the interval between the Hubble observations, so in practice they could only estimate a limit on the mass of the lenses. The lenses could be as lightweight as one quarter the mass of the planet Jupiter -- a sensational finding!
To confirm these extraordinary, but tentative results, Sahu and colleagues next plan to monitor the center of the globular cluster continuously over a seven-day interval. They expect to detect 10 to 25 short-duration microlensing events, which will be well-sampled enough to yield direct measurements of the true masses of the small bodies, perhaps confirming their planetary character.
The modern word "planet" comes from a Greek root that means "wanderer," so named by ancient astronomers who watched the worlds of our solar system move among the stars in the night sky. But our planets are not true nomads, they obediently circle the Sun. The mystery objects of M22, however, appear to be genuine wanderers -- plying their own course in a distant sea of stars. Will they eventually lay claim to the title "planets?" Only time -- and lots more data -- will tell.
Sahu and colleagues published their results in this week's issue of Nature. The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency.
Web LinksHint of Planet-Sized Drifters Bewilders Hubble Scientists -- Piercing the heart of a globular star cluster with its needle-sharp vision, NASA's Hubble Space Telescope has uncovered tantalizing clues to what could potentially be a strange and unexpected population of wandering, planet-sized objects. June 27, 2001, press release.
Astronomers Ponder Lack of Planets in Globular Cluster -- Astronomers using the Hubble telescope made the first broad search for planets far beyond our local stellar neighborhood, in the globular cluster 47 Tuc. To their surprise they found none. Oct. 31, 2000, press release.
M22 -- More information about the globular cluster, from SEDS. (external link)
Hubble Space Telescope -- home page
Join our growing list of subscribers - sign up for our express news delivery and you will receive a mail message every time we post a new story!!!