Jun 19, 2002

Curious Skeletons




Deep within the cells we're made of, squishy skeletons feel the effects of gravity ... and respond in unexpected ways.




Link to story audio
Listen to this story via , a , or get help.


see caption
June 19, 2002: Sculptor Kenneth Snelson's "Needle Tower" is a fragile-looking thing. Criss-crossing rods suspended by taut wires soar perilously upward 20 meters high. Surely it ought to crumble or fall over. Yet it doesn't. When the wind blows, the Needle Tower bends, not breaks. When someone shoves it, it shoves back. The tower is lightweight, strong and curiously beautiful.


Just like the skeletons of cells.

Right: The Needle Tower -- a 1969 tensegrity sculpture by artist Kenneth Snelson -- viewed from below. [more]

That's right, cells have skeletons. They're not made of calcium like the bones that rattle on Halloween. Cell skeletons--biologists call them cytoskeletons--consist of protein molecules arranged into chains. Cytoskeletons give cells their shape, help cells move, and hold the nucleus in place.




Sign up for EXPRESS SCIENCE NEWS delivery
Like Snelson's sculptures, cytoskeletons have tensegrity--short for tensional integrity. They balance compression with tension, and yield to forces without breaking. In the Needle Tower, the wires carry tension and the rods bear compression. In a cytoskeleton, protein chains--some thin, some thick and some hollow--take the place of wires and rods. Linked together they form a stable, but flexible, structure.

NASA is interested in cytoskeletons because cytoskeletons respond to gravity. Weight can provide both tension and compression. But what happens (during space travel, for example) when weight vanishes? Do cells behave differently when their cytoskeletons relax?

Harvard cell biologist Don Ingber is a leader among researchers who have been working to find out.

Below: Cytoskeletons of human endothelial cells glow green in this immunofluorescent micrograph. The filaments meet in triangular structures resembling a geodesic dome -- an example of tensegrity. [more]


see caption
"The cytoskeleton perceives gravity--or any force-- through special proteins known as integrins, which poke through the cell's surface membrane," explains Ingber. Inside the cell, they're hooked to the cytoskeleton. Outside, they latch onto a framework known as the extracellular matrix--a fibrous scaffolding to which cells are anchored in our bodies.


Ingber and his colleagues have shown that when integrins move, the cytoskeleton stiffens. They did it by coating small magnetic beads, about 1 to 10 microns in size, with special molecules that bind to integrins. They attached the beads to the integrins and then applied a magnetic field.

"The beads turned and tried to align with the field, just like a compass needle would want to align with the earth's magnetic field," explains Ingber. The beads twisted the integrins and, in turn, tweaked the cytoskeleton. As more stress was applied, the cytoskeleton became stiffer and stiffer. In fact, it become so stiff that the beads couldn't be turned much past a few degrees!

Tugging on integrins not only caused the cytoskeleton to stiffen, it also activated certain genes. "Activating a gene" means coaxing a gene to generate RNA and proteins. That's important because proteins are little messages that signal the cell to take action. Tickling the cytoskeleton, it seems, can make cells switch between different genetic programs.

Even before the magnetic bead experiment, Ingber's group at Harvard had already discovered a link between cell geometry and cell behavior. In one experiment they forced living cells to take on different shapes--spherical or flattened, square or round--by placing them on tiny adhesive islands of extracellular matrix. Cells that were flat and stretched tended to divide. Cells that were round and cramped tended to die.


see caption
Right: Cytoskeletons give red blood cells their characteristic flat shape. [more]


Says Ingber: "Mechanical restructuring of the cell and cytoskeleton apparently tells the cell what to do."

Very flat cells with taut cytoskeletons somehow sense that more cells are needed--to cover a cut, for example. Rounder, cramped cells might sense an overpopulation problem and decide it's time to die and make room for others. In either case, they are responding to a control system in which the shape-shifting cytoskeleton serves as a switching mechanism.

The potential implications of this research are vast -- and not limited to space travel. It has already led to a prospective cancer treatment based on changes in cell shape. And it could provide new treatments for osteoporosis, cardiac disease, lung problems and developmental abnormalities. Every tissue in the body, says Ingber, has some disease that results from cells responding abnormally to mechanical forces.

"By pursuing the question of [how cells sense] gravity we've uncovered entirely new aspects of cell regulation."


see caption
Left: Donald Ingber of the Harvard Medical School


Ingber believes that tensegrity is a core organizing principle of the entire physical world. Self-stabilizing structures form spontaneously at every scale -- cytoskeletons are merely one example. Another would be spherical carbon molecules called "BuckyBalls" that look like atomic soccer balls. Clay molecules also arrange themselves into tensegrity patterns that some researchers think harbored the first microscopic life forms on Earth. Even the universe itself, with its black holes (compression) and gravitationally linked galaxies (tension), may be a tensegrity structure.

"I gave a talk once at NASA on evolutionary biology," he recalls. "The last slide of my talk was a picture of the universe: super clusters of galaxies. Next to it was a one of capillary cells in a dish, formed into networks. The two pictures looked identical."


more information


NASA's Office of Biological and Physical Research -- supports studies of fundamental biology for the benefit of humans in space and on Earth.

Cytoskeleton Tutorial -- (University of Arizona) The cytoskeleton is both a muscle and a skeleton, and is responsible for cell movement, cytokinesis, and the organization of the organelles within the cell.

Donald E. Ingber -- his home page at the Harvard Medical School

Compression and tension are good, but torque's a killer -- make your own tensegrity structures from fountain pens and rubber bands.

The beginnings of cyto-tensegrity: One day in the mid-1970's when Ingber was an undergraduate student at Yale, he made a model of a cell using wooden dowels and elastic strings. It was unorthodox -- most biologists thought of cells as fluid-filled balloons. That didn't deter the young scientist from experimenting with his stick-figure model, however. Ingber was interested in both sculpture and cell biology -- and his model combined the two. He believed that cytoskeletons, like the sculptures of Kenneth Snelson, had tensegrity. And he was right. In fact, his simple model reproduced some curious behaviors of cells that had long been a mystery. You can learn more by reading "The Architecture of Life" by Donald Ingber, Scientific American, January 1998, p48.


Join our growing list of subscribers - sign up for our express news delivery and you will receive a mail message every time we post a new story!!!


says 'NASA NEWS'