A Star with Two North Poles
April 22, 2003: Three years ago, something weird happened to the Sun.
"It sounds impossible, but it's true," says space physicist Pete Riley of Science Applications International Corporation (SAIC) in San Diego. "In fact, it's a fairly normal side-effect of the solar cycle." Every 11 years around solar maximum, the Sun's magnetic field goes haywire as the Sun's underlying magnetic dynamo reorganizes itself. The March 2000 event was simply a part of that upheaval.
Right: An ultraviolet image of the Sun at solar maximum. Image credit: SOHO. [more]
"The south pole never really vanished," notes Riley. It migrated north and, for a while, became a band of south magnetic flux smeared around the Sun's equator. By May 2000 the south pole had returned to its usual spot near the Sun's southern spin axis--but not for long. In 2001 the solar magnetic field completely flipped; the south and north poles swapped positions, which is how they remain now.
|
The vast region of space filled by the Sun's magnetic field is called the heliosphere. All nine planets orbit inside it. But the biggest thing in the heliosphere is not a planet, or even the Sun. It's the current sheet--a sprawling surface where the polarity of the Sun's magnetic field changes from plus (north) to minus (south). "We call it the 'current sheet,'" says Riley, "because an electrical current flows there, about 10-10 amps/m2." The filament of an ordinary light bulb carries sixteen orders of magnitude (1016x) more amps/m2. But what the current sheet lacks in local amperage, it makes up in sheer size. The sheet is 10,000 km thick and extends from the Sun past the orbit of Pluto. "The entire heliosphere is organized around this giant sheet."
Ordinarily, the current sheet circles the Sun's equator like a wavy skirt around a ballerina's waist. But during the double north pole event of March 2000, the current sheet was radically altered: The waviness increased. Irregularities appeared. Its topology "morphed" from a ballerina's skirt to a giant seashell.
Interesting to a solar physicist, perhaps...
...but ordinary people should care about this, too. First because of energetic cosmic rays: The current sheet acts as a barrier to cosmic rays traveling through the heliosphere. Cosmic rays can't cross the sheet; instead they flow along it. The shape of the current sheet therefore determines how many cosmic rays strike Earth.
Space weather is another reason: As Earth orbits the Sun, it
Below: These auroras appeared over Alaska's Knik Valley during a strong geomagnetic storm on April 8, 2003. Photo credit and copyright: LeRoy Zimmerman.
Geomagnetic storms are both good and bad--bad because they can cause electronics on satellites to short circuit and power grids on Earth to fail; good because they spark auroras, which sky watchers enjoy. "If we could make an accurate daily map of the current sheet, then we could do a better job predicting the onset of these storms."
There's a problem, though: the current sheet is invisible. "We can't see it through an optical telescope," he says, "which means we have to calculate where it is." Riley and his colleagues have developed a computer program to do that. The input data are measurements of the Sun's surface magnetic field; these are taken daily by telescopes on Earth. The program applies the equations of resistive magnetohydrodynamics to calculate how the electrified solar wind drags that magnetic field through the solar system. A supercomputer--Riley uses the Blue Horizon IBM SP3 at the San Diego Supercomputing Center--is required to execute the code.
Left: The shape of the current sheet in March 2000 as calculated by the Blue Horizon supercomputer. [
But how could he check his results?
NASA's Ulysses spacecraft provided the crucial data. In early 2000, Ulysses was about 600 million km from the Sun--perfect for testing the conch model. As the spacecraft cruised through space at 10 km/s it crossed the current sheet twice, once in March and again in April 2000. Onboard magnetometers recorded the crossings, which were in good agreement with Riley's predictions.
Using only measurements of the Sun's surface magnetic field, his software had successfully predicted magnetic fields in interplanetary space 600 million km away. Impressive.
Right: Ulysses observations of the Sun's magnetic field in March 2000 overlaid on Riley's magnetohydrodynamic (MHD) calculations. [
Testing that next-generation software will require more data from Ulysses. The spacecraft follows a high-looping orbit where it can see the Sun's polar regions--something no other spacecraft can do. "This unique trajectory has allowed scientists for the first time to fully explore the heliosphere in three dimensions," says Riley.
A supercomputer on Earth. A spacecraft hundreds of millions of kilometers away. Working together they're getting us ready for the next time the Sun sprouts an extra north pole ... or something stranger yet.
Ulysses -- (JPL) an ESA-NASA mission to explore the Sun's poles and the heliosphere
What did the current sheet look like on your birthday? -- (SAIC) Find out here. See also SAIC's Coronal Modeling Page\
- The current sheet at solar minimum:
- Earth dips in and out of the current sheet:
<div class="dnd-atom-wrapper" data-scald-align="none" data-scald-context="full" data-scald-options="%7B%22additionalClasses%22%3A%22hide-icon%22%7D" data-scald-sid="11422" data-scald-type="file"><!-- scald embed --></div>
- The current sheet at solar maximum no longer looks like a ballerina's skirt:
- The dynamic evolution of the current sheet from April 1999 through May 2001:
Kitt Peak National Solar Observatory -- (KPNSO) the input data for Riley's supercomputer calculations are collected daily at KPNSO.
The Sun Does a Flip (Science@NASA) In 2001 NASA scientists watched the Sun's dipolar magnetic magnetic flip -- a sure sign that solar maximum had arrived.
Below: Earth's magnetic field resembles that of a bar magnet. Such fields are "dipolar."
The Heliosphere (APOD) Where does the Sun's magnetic influence end? The heliosphere extends past the orbits of Neptune and Pluto. How far, no one knows.
The shape of the heliospheric current sheet affects space weather and the propagation of cosmic rays through the solar system.
more: Artist's Conception of the Heliospheric Current Sheet (Stanford University); The Interplanetary Magnetic Field, the Heliospheric Current Sheet and Magnetic Sectors (SWRI)
Join our growing list of subscribers - sign up for our express news delivery and you will receive a mail message every time we post a new story!!!