Science/PP Interface Issues
For Mars Sample Return (MSR)

Penny Boston and the E2E-iSAG team
Jan. 20, 2010

Pre-decisional: for discussion purposes only
Many MSR-related planning questions are separately of interest to PP and “science”.

However, some are of mutual interest:

1. *Some* contamination control aspects
2. *Initial subdivision* of returned samples
3. *Size and diversity* of the returned collection
4. Other?

Ultimately, the mission can only be designed and operated around a single set of requirements.

How can we ensure that both interests are served?
Returned Sample Flow Overview

Samples collected on Mars

Pre-decisional: for discussion purposes only

Preliminary analysis on Earth

Decisions here affect all future sample use!

Returned samples subdivided

HAZARD ASSESSMENT

Implementation is sensitive to different kinds & degrees of contamination.

FULL PROGRAM OF ANALYSIS TO COMPLETE MISSION SCIENTIFIC OBJECTIVES
Questions for Science Planning:

✧ How do different levels of sample contamination affect ability to achieve scientific objectives?

Question for PP Planning:

✧ What are the effects of different sample contamination levels on determination of returned sample hazard potential?

Engineering Consequences of Above:

✧ What contamination control requirements during returned sample analysis should be adopted by the MSR campaign?
✧ How should they be applied to MSR’s various primary systems?
✧ What overall mission contamination control requirements must be implemented?
Possible Overlapping Contamination-related Interests

<table>
<thead>
<tr>
<th>SCIENCE</th>
<th>JOINT</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contamination of the landing site</td>
<td></td>
<td>Special regions</td>
</tr>
<tr>
<td>Contamination of the returned samples</td>
<td>Test for indigenous extant life in the RS</td>
<td>Live Earth microbes to Mars, protect sites of scientific interest</td>
</tr>
<tr>
<td>Inorganic contaminants on RS</td>
<td>Organic contaminants on RS</td>
<td>Are RS hazardous?</td>
</tr>
<tr>
<td></td>
<td>Dead Earth microbes on RS</td>
<td>Live Earth microbes on RS</td>
</tr>
<tr>
<td>Other</td>
<td>Observation of dead Martian biomaterial</td>
<td>Implications for future PP policy</td>
</tr>
<tr>
<td></td>
<td>Ethical issues</td>
<td></td>
</tr>
</tbody>
</table>
Maximize diversity for Science!

“but is that harder to test for biohazards”?

Maximize subsample **uniformity** for PP???

OR

Maximize subsample **diversity** for PP???

Balance Issues

1) **Samples must be subdivided**….
2) **Sample diversity vs total mass**?
3) **Statistically significant subsamples**?
4) **Destructive and nondestructive testing**?
5) **Sacrificial samples**?
6) **Well-mixed vs. discrete materials**?
A call for action!

NASA's 2018 sample caching mission:

- Announcement of Opportunity (AO) scheduled for ~May, 2012
- System Requirements Review (SRR) for ~Feb. 2013

Science inputs

Science team proposes quantitative contamination limits relevant to science & total sample mass needed

PP inputs

PP bodies (on an international basis) determine quantitative contamination limits relevant to PP, & total sample mass needed

A coordination group consolidates and integrates, proposes draft requirements

Integration

- NASA-initiated efforts
 - Summ/Fall, 2011?
- ESA Study
 - Fall 2012

Pre-decisional: for discussion purposes only
Acronyms

- PP Planetary Protection
- MSR Mars Return Sample
- MEPAG Mars Exploration Program Analysis Group
- E2E-iSAG End-to-End International Science Analysis Group
- RS Returned Samples
- NASA National Aeronautics and Space Administration
- MCR Mission Concept Review
- AO Announcement of Opportunity
- SRR System Requirements Review
- ESA European Space Agency