Mass Change DS DO Community Telecon

Bernie Bienstock, Jet Propulsion Laboratory, California Institute of Technology

Mass Change Study Coordinator

April 13 & 17, 2020
Agenda

• Introduction .............................................................. Bernie Bienstock, JPL

• Architecture Options and Technology....................... Bryant Loomis, NASA Goddard

• Science Value Methodology & Preliminary Results ........ David Wiese, JPL

• Value Framework Overview & Preliminary Results ..... Jon Chrone, NASA Langley
• 2017 Decadal Survey released in January 2018
• Identified five Designated Observables, organized as 4 studies
  – Aerosols
  – Cloud, Convection, and Precipitation
  – Mass Change (MC)
  – Surface Biology and Geology (SBG)
  – Surface Deformation and Change (SDC)
• Mass change is determined by measuring gravitational changes over set time periods
• Link to the MC study is at
  [https://science.nasa.gov/earth-science/decadal-mc](https://science.nasa.gov/earth-science/decadal-mc)
• Transparency  
  – Multiple opportunities for public engagement via community meetings, AGU Town Hall, and online

• One integrated NASA Team  
  – Team includes NASA HQ, as well as members from NASA Ames, NASA Goddard, NASA Langley, and JPL

• Explore international partnerships  
  – Regular dialogues with ESA, Germany, and CNES
0. Study Overview

In response to NASA’s “Designated Observables Guidance for Multi-Center Study Plans” released 6/1/2018, JPL, GSFC, LARC and ARC submit this Study Plan to the NASA Earth Science Division for the Mass Change Measurement System (‘MC’). The MC Study described here has three main objectives, namely:

1. Identify and characterize a diverse set of high value MC observing architectures responsive to the Decadal Survey (DS) report’s scientific and application objectives for MC.
2. Assess the cost effectiveness of each of the studied architectures.
3. Perform sufficient in-depth design of one or two select architectures to enable rapid initiation of a Phase A Study.

from the Mass Change Study Plan approved by NASA in October 2018
**Study Phases**

**Mass Change DO Community Telecon**

### Phase 1 Candidate Observing System Architectures
- Open trade space
- Identify innovation and technology opportunities, synergies with other missions, and enabling partnerships

**Events:**
- 11/15/18 HQ Kick-off Meeting
- 7/30-8/19 Mass Change Community Workshop

**Architectures:**
- Self-consistent architectures
- Promising architectures
- Point design
- Design phase gates

### Phase 2 Assessment of Observing System Architectures
- Close trade space
- Specify value framework and perform cost effectiveness analysis

**Events:**
- 12/12/19 AGU Town Hall
- 4/13/20 4/17/20 Mass Change Community Telecons

**Architectures:**
- Collaborative Engineering
- Independent Cost Estimate
- Baseline validated, MCR ready

### Phase 3 Detailed Design of Promising System Architectures
- Iterate Design
- Reconcile Cost

**Events:**
- 10/30/19, 11/15/19, 11/19/19
- 3 SATM Telecons

**Architectures:**
- Baseline validated, MCR ready

---

**Thriving on Our Changing Planet**

A Decadal Strategy for Earth Observation from Space (2018)

**Events:**
- 4/13/18
- 4/17/18

---

**Thrift on Our Changing Planet**

A Decadal Strategy for Earth Observation from Space (2018)

**Events:**
- 4/13/18
Architecture Options and Technology

Bryant Loomis, NASA GSFC

Mass Change Phase 3 Deputy Lead

April 13 & 17, 2020
Three architectures types identified at the Phase 1 community workshop in Washington, D.C. July 30 – August 1, 2019:

1. **SST** = satellite-to-satellite tracking  
2. **POD** = precise orbit determination  
3. **GG** = gravity gradiometer

<table>
<thead>
<tr>
<th>Name/Description</th>
<th>Presenter(s) / Proposer(s)</th>
<th>Type</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single in-line pair</td>
<td>Various</td>
<td>SST</td>
<td>Same as GRACE-FO, but with advances in technology: ranging system, accelerometer, drag-compensation</td>
</tr>
<tr>
<td>Dual in-line pair (Bender)</td>
<td>ESA; TUM</td>
<td>SST</td>
<td>Two pairs of GRACE-like in-line SST: One polar pair and one moderately inclined pair (~70 degrees inclination)</td>
</tr>
<tr>
<td>MOBILE/MARVEL concept</td>
<td>TUM; CNES</td>
<td>SST</td>
<td>1 LEO &amp; 2 MEOs with SST reflector/transponder</td>
</tr>
<tr>
<td>EGO</td>
<td>GeoOptics Inc.</td>
<td>SST</td>
<td>SmallSat train with SST between all satellites</td>
</tr>
<tr>
<td>HDR-GRACE</td>
<td>Ball Aerospace &amp; Technologies Corp.</td>
<td>SST</td>
<td>SmallSat pair in pendulum orbit with frequency comb ranging system</td>
</tr>
<tr>
<td>POD constellation</td>
<td>Spire Global Inc.; DLR</td>
<td>POD</td>
<td>Large constellation of GPS receivers, possible inclusion of accelerometers and/or future SST tech.</td>
</tr>
<tr>
<td>Atomic interferometer GG</td>
<td>GSFC/AOSense Inc.; ESA/CNES; JPL</td>
<td>GG</td>
<td>1 LEO with atomic interferometer gravity gradiometer</td>
</tr>
</tbody>
</table>

★ These observing system architectures are at very different maturity levels → currently being assessed in Phase 2
Discussions in Germany – includes biodiversity payload

Favored by ESA

Favored by CNES

Highlighted boxes = Orbit & technology trade space
Key technologies identified at the Phase 1 community workshop in Washington, D.C. July 30 – August 1, 2019:

- **Accelerometer** errors are the dominant GRACE/GRACE-FO measurement errors; improvements not required for MC but are a top priority for possible inclusion as a technology demonstration
- Primary focus is on **accelerometer** developments and the LRI as the primary SST measurement for continuity and improved performance
- **Gravity gradiometer** is far reaching technology path forward for future mission advancement
- **Drag compensation** and **attitude control** technologies support further mission improvements from the LRI and accelerometer advancements – developments not currently a focus of MC team
Key technologies identified at the Phase 1 community workshop in Washington, D.C. July 30 – August 1, 2019:

- Accelerometer
- Laser ranging (LRI)
- Gravity gradiometer
- Drag compensation
- Attitude control

Accelerometer technologies community white paper by Conklin et al., submitted to Mass Change team Jan 2020:

- ONERA electrostatic
  - GRACE-FO pre-launch: $\sim 2 \times 10^{-11}$ m/s$^2$ Hz$^{1/2}$
  - Expected performance of MicroSTAR: $3 \times 10^{-12}$ m/s$^2$ Hz$^{1/2}$; Currently TRL 4/6; $\sim$1.5 years to get to TRL 6

- Simplified LISA Pathfinder Gravitational Reference Sensor (GRS):
  - Expected performance: $10^{-12}$ m/s$^2$ Hz$^{1/2}$ or better
  - Technology roadmap:
    - Needs 7–8 years for flight sensors and $\sim$30 M
    - Dependent on drag-free or drag-compensated for stated performance
    - Possible integration with LRI for direct measurement of test masses

- Compact optomechanical accelerometer for SmallSat/CubeSat implementation:
  - Expected performance: $10^{-7}$ to $10^{-10}$ m/s$^2$ Hz$^{1/2}$
  - Technology roadmap:
    - Currently at TRL 2/3; $\sim$2–3 years and $\sim$500,000 to get to TRL 4/5
    - Uncertain path to flight sensors
Key technologies identified at the Phase 1 community workshop in Washington, D.C. July 30 – August 1, 2019:

- Accelerometer
- Laser ranging (LRI)
- Gravity gradiometer
- Drag compensation
- Attitude control

LRI technologies community white paper by Lee, Klipstein, et al., submitted to Mass Change team Feb 2020:

- GRACE-FO LRI:
  - Successful technology demonstration; ~100x improvement over MWI; sensor system is high TRL

- LRI as primary instrument technology development path:
  - Optical bonding – pre-launch mechanical stress test caused some bonds to fail
  - Mechanical isolation – mechanical disturbances are causing phase jumps
  - Redundancy – less redundancy for LRI tech demo than required for primary instrument
  - Scale length stability – GRACE-FO LRI currently dependent on MWI to calibrate scale length
    - Data analysis options: LRI range vs. GPS range; estimate as a parameter with geopotential
    - Hardware options: High freq. cavity modulation; frequency comb; absolute frequency stabilization

- Desired LRI enhancements:
  - Noise reduction – cavity coating improvements
  - Interface between LRI and accelerometer test mass
  - High dynamic range – optical frequency comb enables pendulum orbit architecture
  - CubeSat implementation – μNPRO in development at GSFC; expected TRL 6 in 2020
Key technologies identified at the Phase 1 community workshop in Washington, D.C. July 30 – August 1, 2019:

- Accelerometer
- Laser ranging (LRI)
- Gravity gradiometer
- Drag compensation
- Attitude control

Status of gravity gradiometer technology development:

- AOSense lab instrument in collaboration with NASA GSFC:
  - Currently TRL 4
  - Expect to achieve measurement accuracy of \(<10 \frac{E}{\sqrt{Hz}}\) in 2020
  - Expect to achieve measurement accuracy \(<1 \frac{E}{\sqrt{Hz}}\) and TRL 5 early 2021
  - Ground measurement of \(<1 \frac{E}{\sqrt{Hz}}\) corresponds to \(~10^{-5} \frac{E}{\sqrt{Hz}}\) in microgravity with longer interrogation time
  - Time variable gravity simulations: One or two gravity gradiometers with pseudo-radial pointing

- JPL (Nan Yu et al.):
  - Developed Transportable Quantum Gravity Gradiometer (QGG) under ESTO-IIP
  - Assessed at TRL 5 in 2015
  - Measurement accuracy of \(40 \frac{E}{\sqrt{Hz}}\)
  - Time variable gravity simulations: LRI SST equipped with QGG

- NASA/JPL: Cold Atom Lab (CAL) atomic interferometer demo on ISS – launched May 2018 and now operating

*Gravity gradiometer white paper still in development*
Selections for Category 3 funding have been made to support these technology development efforts:

- LRI improvements in optical frequency comb and optical cavities
- Compact optomechanical accelerometer
- SmallSat/CubeSat SST Constellation

Currently funded through IIP:

- Development of Gravitational Reference Sensor (GRS)

Separate efforts are underway to develop detailed technology roadmaps with work schedule and cost estimates for:

- Development of LRI as primary SST instrument
- Development of Gravitational Reference Sensor (GRS)
Methodology for determining Science Value

David Wiese, Jet Propulsion Laboratory, California Institute of Technology

Mass Change Deputy Study Coordinator

April 13 & 17, 2020
Decadal Survey Science and Application Objectives for Mass Change

A Diverse Set of Objectives Spanning Three Panels

**Climate Variability and Change**
- **C-1a:** Global Sea Level
- **C-1b:** Ocean Heat
- **C-1d:** Regional Sea Level

**Global Hydrological Cycles and Water Resources**
- **C-1c:** Ice Sheet Mass Change
- **C-7d:** Dynamical Ocean State
- **C-7e:** Ocean Circulation

**Earth Surface and Interior**
- **H-1a:** Water Balance Closure
- **H-2c:** Groundwater Recharge
- **H-3b:** Water Availability & Storage
- **H-4c:** Drought Monitoring
- **S-1b:** Earthquakes
- **S-3a:** Glacial Isostatic Adjustment/Local Sea Level
- **S-5a:** Earth Energy Flow
- **S-6b:** Groundwater Flux

**MC Utility Score**
- **H:** High
- **M:** Medium
- **L:** Low
- **VL:** Very Low

**DS Prescribed Weights [Importance]**
- Most Important (Highest weight)
- Very Important (Medium weight)
- Important (Lower Weight)

Science Performance Targets

4/13/20
Decadal Survey Science and Application Objectives for Mass Change

A Diverse Set of Objectives Spanning Three Panels

**Climate Variability and Change**
- **C-1a:** Global Sea Level
- **C-1b:** Ocean Heat
- **C-1d:** Regional Sea Level

**Global Hydrological Cycles and Water Resources**
- **C-1c:** Ice Sheet Mass Change
- **C-1e:** Dynamical Ocean State
- **C-7d:** Ocean Circulation

**Earth Surface and Interior**
- **H-1a:** Water Balance Closure
- **H-2c:** Groundwater Recharge
- **H-3b:** Water Availability & Storage
- **S-1b:** Earthquakes
- **S-3a:** Glacial Isostatic Adjustment/Local Sea Level
- **S-4a:** Landscape Changes
- **S-5a:** Earth Energy Flow
- **S-6b:** Groundwater Flux

**DS Prescribed Weights [Importance]**
- Highest weight 1.0
- Medium weight 0.67
- Lower Weight 0.33

**MC Utility Score**
- H: High 1.0
- M: Medium 0.67
- L: Low 0.33
- VL: Very Low 0.10

**Weight = Importance * Utility**

4/13/20
### Decadal Survey Science and Application Objectives for Mass Change

**A Diverse Set of Objectives Spanning Three Panels**

#### Climate Variability and Change

<table>
<thead>
<tr>
<th>Objective</th>
<th>Utility Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1a: $(300 \text{ km})^2; 15 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>C-1b: $(300 \text{ km})^2; 15 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>C-1c: $(300 \text{ km})^2; 40 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>C-1d: $(300 \text{ km})^2; 15 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>C-1e: $(300 \text{ km})^2; 15 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
</tbody>
</table>

#### Global Hydrological Cycles and Water Resources

<table>
<thead>
<tr>
<th>Objective</th>
<th>Utility Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1a: $(1000 \text{ km})^2; 10 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>H-2c: $(450 \text{ km})^2; 25 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>H-3b: $(450 \text{ km})^2; 25 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>H-4c: $(450 \text{ km})^2; 25 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>C-7d: $(300 \text{ km})^2; 15 \text{ mm}$ Monthly</td>
<td>L</td>
<td>Low 0.33</td>
</tr>
<tr>
<td>C-7e: $(300 \text{ km})^2; 15 \text{ mm}$ Monthly</td>
<td>L</td>
<td>Low 0.33</td>
</tr>
</tbody>
</table>

#### Earth Surface and Interior

<table>
<thead>
<tr>
<th>Objective</th>
<th>Utility Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1b: $(300 \text{ km})^2; 25 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>S-3a: $(300 \text{ km})^2; 25 \text{ mm}$ Monthly</td>
<td>H</td>
<td>High 1.0</td>
</tr>
<tr>
<td>S-4a: $(300 \text{ km})^2; 25 \text{ mm}$ Monthly</td>
<td>M</td>
<td>Medium 0.67</td>
</tr>
<tr>
<td>S-5a: $(20,000 \text{ km})^2; 1 \text{ mm}$ Monthly</td>
<td>VL</td>
<td>Very Low 0.10</td>
</tr>
</tbody>
</table>

### DS Prescribed Weights [Importance]

- **Most Important**
  - Highest weight 1.0
- **Very Important**
  - Medium weight 0.67
- **Important**
  - Lower Weight 0.33
- **Very Important**
  - Very Low 0.10

### MC Utility Score

- **H**: High 1.0
- **M**: Medium 0.67
- **L**: Low 0.33
- **VL**: Very Low 0.10
Propagate satellites through a 'truth' reference world (hydrology, ice, ocean dynamics, atmosphere, ocean tides)

Generate 'truth' measurements

Add noise to measurements

Propagate orbits through a 'nominal' reference world (ocean dynamics, atmosphere, ocean tides)

Generate 'nominal' measurements

Residuals or Reduced Observations

Estimate gravity field that best fits residuals

Case 1: Includes temporal aliasing errors due to inaccuracies in forward models of high frequency mass variations. ‘Truth’ and 'Nominal' reference worlds are different.

Case 2: Measurement system errors only. ‘Truth’ and ‘Nominal’ reference worlds are the same.
Science value is calculated including temporal aliasing errors (red curve to the right). Hidden in this metric is any benefit due to improved measurement system performance that more innovative data processing, or future improvements in dealiasing models, may be able to exploit.

This was a concern expressed by members of the community during previous community telecons.

Solution: In addition to calculating science value, we also calculate a “measurement margin” for each architecture that quantifies the performance of the measurement system only.
Quantitatively Determining Science Value

\[ SV(a) = \frac{\sum_{n=1}^{15}(W_n)P_n}{\sum_{n=1}^{15}(W_n)} = \frac{\sum_{n=1}^{15}(W_n)\frac{\text{Spatial Res}_n}{\text{Spatial Res}(a)}\frac{\text{Temporal Res}_n}{\text{Temporal Res}(a)}\frac{\text{Accuracy}_n}{\text{Accuracy}(a)}}{\sum_{n=1}^{15}(W_n)} \]

Assessing value against spatial resolution

C-1d:
(300 km)²; 15 mm
Monthly

Medium – High Weight

\[ SV_{C-1d} = 0.67 \times \frac{(300/225)^2}{15} = 1.2 \]

\[ W = \text{Importance} \times \text{Utility} \]

Assessing value against accuracy

H-1a:
(1000 km)²; 10 mm
Monthly

Highest Weight

\[ SV_{H-1a} = 1 \times \frac{10}{4} = 2.5 \]

Architectures are assessed directly against targets in the SATM to provide a quantitative science value to each architecture

Results are Preliminary

Exceeds Baseline by a factor 3
Exceeds Baseline by a factor 2
Baseline Objectives Met

Science Value

Normalized Science Value

POD: 100 satellites
SST: 1-Pair 500 km
SST: 1-Pair 350 km
SST: 2-Pair 500 km
SST: 2-Pair 350 km
AIGG: 1-sat
AIGG: 2-sat
Three metrics are assessed

(1-2) Science Value
- Includes temporal aliasing errors
- Value of 1 means Baseline objectives are met on average
- Assessed with and without post-processing applied

(3) Normalized Measurement Margin
- No temporal aliasing errors
- Assesses only the capability of the measurement system
- Normalized against program of record (POR) so a value of 1 indicates consistency with POR, and values < 1 mean degradation relative to POR
Architecture Evaluation
Jon Chrone, NASA LaRC
Mass Change Phase 2 Deputy Lead
April 13 & 17, 2020
• Objectives
  – Assess the cost effectiveness of each of the studied architectures
  – Perform sufficient in-depth design of one or two select architectures to enable rapid initiation of a Phase A study

• Guidelines
  – Measures will be defined based on the ESAS 2017 DS to assess the features relevant to decision criteria while providing the ability to discriminate between alternatives
  – The DO study will identify architectures to support most important and very important science objectives
  – Value Framework will assess architecture solutions to most/very important science objectives (performance), risk, cost, schedule
  – A basis for down-selection will be necessary; justification will be needed for eliminating candidate architectures
1. **Conceptualize Architecture**
   - Number of Platforms & Orbits
   - Size: Medium sat, Small sat
   - Combinations, etc.
   - Non-flight system elements

2. **Measurement Approach**
   - Instrument number, type
   - Technology
   - Ground/data system
   - Data fusion

3. **Instrument Capability**
   - Capability levels in SATM
   - Technology options

4. **Map Capability to Objectives**
   - To what extent does capability meet objectives?
     - Most important, very important, important

5. **Size Space System**
   - Mass, Power
   - Size class of spacecraft
   - Select launch vehicle

6. **Estimate Cost**
   - Instrument – parametrics, analogy
   - Spacecraft – heuristics, parametrics
   - Launch – table, $/kg rule-of-thumb
   - Other – Percentage wraps
   - Commercial services, Partner contributions

7. **Assess Value vs. Cost**
   - Value metric = f(decadal objectives)
   - Cost can be a point or range
   - Risk-rated based on TRL or availability relative to need date

8. **Architecture Selection**
   - Compare with threshold (80%) and baseline (100%) science objectives
   - Identify opportunities for partnership
   - Assess affordability and risks

---

**Value Effectiveness**

**Cost Effectiveness - Comparisons**

4/13/20
• Preliminary results for SST based architectures at 350 and 500 km altitudes
• Value scoring does not yet account for mission duration
• Reduced cost may be enabled through strategic partnerships
• Enhanced science return is enabled through new technologies and/or innovation
• Architectures below the Baseline or significantly above cost target will not be considered

Results are Preliminary

$300M (Phase A-D)
Continuity with GRACE Follow-On

- Continuity is paramount
- Assess GRACE-FO (GFO) status and predicted end of life
  - Combination of orbit lifetime (re-entry date) and system reliability
- Orbit lifetime is highly dependent on solar activity and its impact on atmospheric density
  - Range of 2026 – 2035 (~95% - 50% confidence intervals) based on altitude degradation only
- Working with GFO team to understand long term system reliability based on current GFO status
- Schedule alignment with partners may affect development schedule
- Using new approaches/technology may require overlap to assess potential biases and perform calibrations
• 5/26-29: Team X design session at JPL
  – Focus on smallest feasible implementation
• 6/1-9: Instrument Design Lab at GSFC
  – Focus on Gravity Gradiometer instrument concept
• June: Update Analysis of Alternatives documentation
• July: Deliver final briefing to HQ with recommended architecture candidate
A set of measures of effectiveness (MOEs) have been defined based on the ESAS 2017 DS. Measures of Effectiveness assess the key features relevant to decision criteria while providing the ability to discriminate between alternatives. The alternatives will then be evaluated through a set of analyses covering such assessment areas as capability, cost, schedule, risk, and affordability.
• Reduced cost may be enabled through strategic partnerships and/or commercial opportunities
• Enhanced science return may be enabled through new technologies and/or innovation
• Architectures below the Threshold or significantly above cost target will not be considered