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NASA FDL OVERVIEW- DR LIKA GUHATHAKURTA (on behalf of the FDL team.)
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Open Data Explore Witl

\What is NASA doing with Big Data
today?

October 04, 2012 by Nick Skytland
Open Data - Open Source Q@ open government

Open Innovation TopCoder

In the time it took you to read this sentence, NASA gathered approximately 1.73 gigabytes of data from our nearly 100
currently active missions! We do this every hour, every day, every year — and the collection rate 1s growing exponentially.
Handling, storing, and managing this data is a massive challenge. Our data 1s one of our most valuable assets, and its
strategic importance in our research and science i1s huge. We are committed to making our data as accessible as possible, both
for the benefit of our work and for the betterment of humankind through the innovation and creativity of the over seven

billion other people on this planet who don’t work at NASA.




“Applied artificial intelligence research accelerator that
combines the capabillities of NASA, academia, and
private sector companies to tackle challenges not only
Important to NASA, but also to humanity’s future.”
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SETI enables
the public / private
partnership




FDL private sector
partners provide
GPU compute, storage
and expertise

MyIDIA
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FDL POST-DOC TEAMS ARE INTERDISCIPLINARY:
50% DATA SCIENCE / 50% SPACE SCIENCES  |#
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BUT FIRST SOME CONTEXT...

NASA / BIG DATA / Al

WHAT ARE THE OPPORTUNITIES?
HOW CAN FDL HELP NASA MOVE FORWARD?



Artificial Intelligence . A Few Definitions

Artificial Intelligence (Al)

A computer which mimics cognitive functions typically associate with human intelligence.
Examples . goal seeking strategy formulation, complex image recognition, "learning"”, inference, and creative problem solving.

: : N . | : " UNSUPERVISED —
Machines Learning (ML): A branch of artificial intelligence in which a computer LEARNING CLUSTERING

Group and interpret

progressively improves its performance on a specific task by “learning” from data, D e i
WIthOUt belng eXpllCItly programmed —_— on input data

* Closely related to computational statistics, which focuses on prediction and ,,
optimization. LEARNING

Develop predictive
model based on both
input and output data

MACHINE LEARNING CLASSIFICATION

REGRESSION ‘

Data Mining: Discovering patterns in large data sets using techniques at the
Intersection of machine learning, statistics, and data management.

IMAGENET Annual Competitionto accurately classify over

Deep Learning (DL): An extension of Machine Learning that uses the 10 million hand-annotated images

100%

mathematical concept of a neural network (NN) to loosely simulate information T

90%

processing and adaptation patterns seen in biological nervous systems.

 Many problems which have been traditionally tackled with pensive coding Supe!-human acouracy
have been overwhelmingly superseded by neural nets that outperform the :
humans that trained them.

 Exponential investment (patents, publications, funding) has fueled rapid _
advances in DL capabillities to make predictions, to identify anomalies, and x _—
ZRERE 3 § atistical ML and hand-coded
even create new content that mimics what it has previously seen. % computer vision solutions

2011 2012

Accuracy

Deep Learning takes over




Statistical Machine Learning vs. Deep Learning

Deep learning

Data Scale: When properly
architected, the efficacy of
DL systems continue to
Improve with more data,
long after statistical models
have plateaued.

Performance

|

Amount of data

Feature Discovery: Machine Learning often requires a human expert to
create “feature extractors” that enable the statistical models to

learn effectively, but Deep Learning finds these high-level features

for itself (often with surprisingly creative results)

Raw data Low-level features Mid-level features High-level features

BTSN L AEACEHINS (e
4r=u!:! EELOImoan -I

IIEIIIHIII I
UIALY = e
AL L ]

Deep Learning will discover these feature abstractions for itself.

Interpretation: Machine Learning systems provide “visibility” into their statistical
foundations, allowing their results to be interpreted and explained. Deep
Learning systems are more of a “black box”, although this is improving... and in
some cases this is not an impediment (e.g. Al-enhanced science discovery)

Whole System: Machine Learning typically requires that complex systems be
“chunked” into trainable components that are then manually recombined.
Deep Learning can often “short circuit” that process and successfully model
complex systems from end-to-end

Image courtesy I.\IASA/JPL

| Earth Eur‘n-:::;.:;'u'-:re'

Earth Atmosphere
|
Activity
Phengomena |

Magnetized Plasma Clouds 3
Heliosphere ]

.

Deep Learning can often discover features to learn from the entire system

Energetic Particles



Examples of Deep Learning In Space Science

Discovery of Dipoles using Neural Networks

degraded GAN recovered

Deep Learning Enhanced Astrophysical Images

L L

, K

Credit: V. Kumar

PSF=2.5", 100 * Detection of Global Dipole Structures
* Most known dipoles discovered
Kevin Schawinski et al, Generative Adversarial Networks recover features in aS'[I‘OphySical e Some ‘new’ dipoles: previously unknown phenomenon?

images of galaxies beyond the deconvolution limit, Royal Astronomical Society, 2017

* A new dipole near Australia [Liess et al., J Clim’14]

Input Layer QOutput Layer

Neural Network
discovery and
analysis of
gravitational lenses

Neural Net Analysis o
f Mars HIRISE
Images

! B 525 J140156+554446 3 18 i SL25 J142059+563007

Credit: Leon Palafox,
University of Arizona  sgom

dentification of Martian volcanic rootless cones within Yashar D. Hezaveh et al. “Fast automated analysis of strong gravitational lenses with
HIRISE images (96% classification accuracy) convolutional neural networks”, Nature, Aug 2017



Examples of Deep Learning In Space Science

Deep Learning Discovery of Hypervelocity Stars

Applying Deep Learning Al techniques to
the Orbit Propagation Problem

@' esa Present

Inputs: 1720(1 rev.), Training data: 4 satellite revolutions, Hidden layers: 1.

@ Hidden neurons: 74.
@ Total number of weights & bias: 127354.
@ Activation function: Maxout.
m

@ Training
B Forecast

Elena Rossi, et al. Discovery of hypervelocity stars using an artificial neural network with ESA Gaia
data, European week of Astronomy and Space Science, 2017

4

Number of revolutions

Juan Félix San-Juan Applying Al techniques to the orbit propagation problem

Juan Felix San-Juan, International Round Table on Intelligent Control for Space Missions
November 24, 2017



Al & Deep Learning at NASA

« Some Deep Learning exploratory projects are underway at NASA. Examples...

* NASA DeepSAT: A Deep Learning Approach to Tree-Cover Delineation in 1-m NAIP Imagery. (S. Ganguly, AGU 2016)
 Anomaly detection in aviation data using extreme learning machines. (V. Manikandan, et al. International Joint

Conference on Neural Networks, 2016)

 Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications. (P.

Ferreria, et al. NASA/TM-2017)

... but more experience Is needed In order to establish an overarching strategy.

 FDL provides a low-risk / low-cost mechanism for NASA to move
forward:

 Program is managed by the SETI Institute, but with NASA
guidance on the problem definitions

* Private sector partnerships provide infrastructure, resources
and much of the funding

 NASA experts participate, learn, and observe best practice:
allows NASA'’s strategy for Al to move forward in a more
iInformed manner

“Frontier Development Lab is proving its value at training early
career professionals/students to apply modern data science
techniques to sticky analysis problems confronting NASA science
and exploration programs. [...] The BDTF finds that this type of
program aligns with its recommendations to NASA that there
needs to be more formal, long term education as well as more
short-form workshops dedicated to introducing modern data

science methodologies as approaches for improving the
discoveries in its vast science data archives.”

Source: Final Report of the Big Data Task Force, NASA Advisory

Council Science Committee, 2017.
https://science.nasa.gov/science-committee/subcommittees/big-data-task-force
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« PROGRAM STRUCTURE
 RESULTS & PROGRESS
 FUTURE PLANS



PLANETARY DEFENSE

3 projects in 2016

6 projects in 2017

12 projects being
assessed for 2018




PLANETARY DEFENSE

ADJANCENT
BUT RELATED
PROBLEM
DOMAINS

ALLOWS USEFUL
OVERLAP OF
EXPERTISE
AND TALENT
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IBM’s Executive Project Manager
briefs the FDL team on the compute resource
available for each team.

Nin
/ U‘.l”._




Google’s Francois Chollet - inventor of the
Keras.io framework briefs the FDL team.
(Python for machine learning.)

ONTIER -

IG-PERIOD .
[ETS -

The loop
of
progress

Experimé




SPACE WEATHER
MISSION 02

eCurrent operational flare forecasting relies on
human morphological analysis of active
regions and the persistence of solar flare

e’ e B =. vl X .
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The FDL team performed analyses of solar
magnetic complexity and deployed
convolutional neural networks to connect
solar UV images taken by SDO/AIA into
forecasts of maximum x-ray emissions.

The technigue has the potential to improve
both the reliability and accuracy of solar flare

predictions.



SPACE WEATHER: SOLAR STORM PREDICTION \

Interdisciplinary

K Collabcraﬁm m \

THIS 15 YOUR MACHINE LEARNING SYSTEM? THE SUN'S ATMOSPHERE IS A

YUP! YOU POUR THE DATA INTO THIS BIG SUPERHOT PLASMA GOVERNED BY

PILE OF LINEAR ALGEBRA, THEN COLLECT MAGNETOHYDRODYNAMIC FORCES...
THE ANSLJERS ON THE OTHER SIDE. AH VES

WHAT IF THE. ANSWERS ARE WJRONG? J OF COURSE.

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

"~.

WHENEVER T HEAR THE WORD

"MAGNETOHYDRODYNAMIC" MY BRAN
JUST REPLACES IT WITH “MAGIC.

Heliophysicist’'s view of ML Data scientist's view of HP
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Electromagnetic Particle Massive Magnetic Ropes
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FLARES

Disruption of
Communications

Satellite
Damage
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Power grid
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Speed of Light Relativistic speeds
20 minute warning 20 hour warning



SPACE WEATHER: SOLAR STORM PREDICTION

How i'a flar

Solar Flares

7

40 60 80 100

May — June 2014

Using X-ray flux as measured by the GOES satellite
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SPACE WEATHER: SOLAR STORM PREDICTION

Deep Lear B

IMAGENET

Accuracy Rate

® Traditional CV Deep Learning

2010 2011 2012 2013 2014 2015

NVIDIA. Deep learning has revolutionized the way we do image classification.




1. Dataset Preparation: Take advantage of big data
7. Software: Build scientific process
3. Prediction: Enable Flare Forecasting

4. Sclence: Visualize Results

« Discover Flare Precursors
* Providing new physical insight
* New Physics?
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Can we use deep learning
to connect AIA Images with
flare strength?
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- . Block 1 - 24 576 parameters h
| spomia . \  \ax Pooling /.
F I are N et o Loaly) —> Conv2D —-> Conv2D — %8 0
16 8x8 Filters 16 88 Filters \ /
e 1024x1024x8 H 1024x1024x16 1024x1024x16 128x128x16 |
M A
o I
, Block 2 - 95 304 parameters *
x& Max Poolin //
gy 8 ! — Comv2D (= Conv2D
\ / 32 8x8 Filters 32 8x8 Filters
| 16x16x32 128x128x32 128x128x32 |
M P
o I
, Block 3 - 393, 216 parameters *
HH Max Poolin ff
Comv2D D™ Comv2D P 9y 8 7
54 8x8 Filters 16 8x8 Filters \ /
H 16x%16x64 16% 1664 2x2x64
M A
Dense
10 Meurons
2560 parameters
Total parameters: 518,667 ¢
Dense
1 Meurons

11 parameters
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SPACE WEATHER: SOLAR STORM PREDICTION

Memorization Vv

* Training * Validation

3 C-class M-class
107 | '

Our first goal was to see If the neural network
could connect AIA Iimages with flare X-ray
amplitude.

The concern I1s whether the neural network Is
simply memorizing the images.
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Observed X-ray Flux (Watts m-2)
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SPACE WEATHER: SOLAR STORM PREDICTION

Memorizatl

Only flares observed
L o _ prior to 2015
® Training * Validation - - =X o

10°3 ~C-classl M-class | X-class used for tralnlng

Our current neural network seems to be able
to generalize for weak flares (C-class), but not
yet for stronger flares .
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Flare Amplitude Distribution - SDO era

[ C-class: 7191 flares -
| IM-class: 635 flares
| |X-class: 44 flares

Our current Dbiggest challenge Is class
Imbalance!

X-Ray Flux



What does a convolutional neural
network pay attention to?

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps.



Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps.






SPACE WEATHER: SOLAR STORI\/I PREDICTION

9 Flare‘let S W‘ttlvatlons

Several convolutional layers allow the neural network to
recognize features of increased complexitv



Block 1

Filter 7 Color

Block
Filter 87

Textur
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Block ‘
Filter 7
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= Developed a framework to apply CNNs to heliophysics

problems.

*  Developed a CNN visualization framework to mine
trained networks for physical insight.

= Demonstrated the capability of CNNSs to identify
structures of flaring relevance.
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1. Expand our data enhancement capabillities.

1. Explore the possibility of adding other instruments to
Increase our flare pool (Stereo, SOHO, GOES.)

1. Try alternative problem definitions besides regression
(distribution, classification.).



RAAL

INTER TIONS

 The vast amounts of data collected by satellites and
observatories operated by government agencies such as
NASA, NOAA and the US Geological Survey remains a
largely untapped resource for discovering how the Sun
Interacts with Earth.

 The FDL team buillt a knowledge discovery module named
STING (Solar Terrestrial Interactions Neural Network
Generator) on top of industry-standard, open source
machine learning frameworks to allow researchers to
further explore these complex datasets.

« STING showed the ability to accurately predict the
variability of Earth’s geomagnetic fields in response to solar
driving - specifically the KP index.

*In the process the tool discovered the imprint of the
magnetospheric ring current in precursors of geomagnetic
storms - an example of an Al derived discovery.



SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

DATA SOURCES

| DSCQVIF{ SnllarWindl - |

s 0 0
P
P I

P 3,

1901?—[}5—[]6 00:00 2017-05-07 00:00 2017-05-08 00:00

Solar wind data from swpc.noaa.gov. Plot by "9 RESE' LLC" for spaceweathernews.com




SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

Kp INDEX

s K index | nT dift
L3400 =M e A aid U .:' e this table on the
13350~ v & right to convert the
difference in the

maximum and

mirmum

A ,.;-.,,.r""‘aw_ﬂ"“‘-"--a x-values for today to

I aK index The

larger the K index,

the stormier it 1s in

Earth’s magnetic

field.

c3:GR: 48 UT

120-200

Petersburg, AK magnetometer
data with a 75 nT change in the
X-cdirection (Magnetic North)

I-II |I-II II-II I:I I:I II-II
3
U= 91
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SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

GRADIENT BOOSTING RESULTS

DummyRegressorMean

DummyRegressorMedian

GradientBoostingRegressor100
—— Ground Truth K p

‘I
¥ -y

l'»

T T T
34000 36000 38000

2016-10-10T705:09:00.000000Z




SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

FEATURE DISCOVERY

This plot shows the relative importance of the physical parameters for Kp prediction.

K p
Vx, km/s, GSE

Field mag avg, nT

O S|G X

Proton density, nfcc

Most important: Current Kp index

Other important predictors:

SHU Z - Solar wind magnetic field strength and Bz,
@ Hon _x - Solar wind speed and proton density,
HON Y - Unexpected Result: N-S component of the
Bz nT (GSM) geomagnetic field at low latitude stations (Guam,

GUA Y Hawali, Puerto Rico). This points to the importance
FRD Y of the magnetospheric ring current.
FRN Z

Flow speed, km/s (O Machine learning extracted important physical
5IG_Z parameters without a priori knowledge of the system.
NEW 7

Al ]



PLANETARY DEFENSE
MISSION 02

RADAR

COMPUTE BY

lll.l

-]

U[T]
[

3D SHAPE
MODELING

[l

 The FDL team tackled the task of automating
task of creating 3D shape models of NEOs

from sparse radar data

* The process currently takes up to four
weeks of manual interventions by experts

using established software.

 The team demonstrated a pipeline for
automation that allows NEOs to be modelled

INn several hours.

* This result will hopefully support
researchers render 3D models of the current

backlog of radar imaged asteroids.
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RADAR OBSERVATION “_. |
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RADAR DETECTIONS OF NEAR-EARTH ASTEROIDS

1980 - 2017
2] (D S S S G T PSP G
[1 Total radar detections i
| O Areoko dematons ] We are observing NEAs faster
100} [ Goldstone detections than we can analyze them!
| Updated: 2017 Aug 10
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SHAPE MODELING PIP (V=

Raw radar data

ey _
weeks
days

Vertex fit
/efmed triangular mesh
Spin state
- Final result
Initial triangular mesh

|

<

-
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Preprocessing
/ Simplified shape

0.16(16_03)

0.43 (19_03)

pole ecliptic latitude

0.75 (18 _01)

pole ecliptic longitude



PLAN AR‘T DEFENSE: RADAR 3D SHAPE MODELIN

VARIATIONAL AUTO EN

Generative mode| . Condition on
delay-Doppler images
Kingma and Welling, 2013
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OUR SOLUTIONS

a) Pre-processing Is faster

b) Spin axis determination Is faster

c) Training data generation Is improved
d) Neural network Is improved




PI_.ANETARY' BEEE N SE
MISSION 01. . 2ADAR 3D SHAPE MODELIN

| LONG-PERIOD :  Meteor showers gaus
co ME TS ; _ | of long period comets can guide deep searches,
. | o .

and improve warning time, for potentially hazardous
long period comets that passed near Earth’s orbit in
the past ten millennia.

 The FDL team showed how the data reduction of
the ‘CAMS’ meteor shower survey program could be
successfully automated by using deep learning

o ey approaches.

* By using dimensionality reduction (t-SNEs) the team
were able to identify yet uncatalogued meteor shower
clusters - a promising direction for further
Investigation.
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PLANETARY DEFENSE: LONG-PERIOD COMETS : G

Meteor shower surveys -
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INO REAL DATA YET: SITE IS UNDER CONSTRUCTION]

CAMS

L
l.'."-
Hah, Wy +.|_"'

g

L%

All Networks:
BeMNelux
California

EXOSS
Florida
LOCAMS
Mid-Atlantic
New Zealand
South Africa
LACN

Start a new network? Today's date: 2017-08-09

Contact us.
Most meteors T{:Iﬂﬂ':,l'!

Last submission by:
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PLANETARY DEFENSE: LONG-PERIOD COMETS : 0

Established meteor showers.

ki g

Alpha Capricornids

Southern Delta Aquarids

Ferseids

MNorthern June Aquilids

Fhi Piscids

MNA




SPACE RESOURCES (inteD SR 2t cec., '

MISSION 01 XADAR 3D SHAPE MODEL]

LU NAR WATE R  Maps that deta;F
S VULAILILES

Ry polar regions are plagued by artefacts and shadow
variability that severely hamper the planning of future
prospecting missions.

* A large dataset was compiled for the south polar
region and high-level feature extraction was
performed. Results showed an impressive speed-up of
100x compared to human experts, with more than
98.4% agreement when approaching a crater labelling.

* This work represents a potential keystone to facilitate
accessing water on the Lunar surface and future
traverse planning.

compuT Y (intel)



Lunar Orbiter Laser Altimeter Narrow Angle Camera (NAC)
Digital Elevation Model (LOLA DEM), 20 m resolution Optical images, 0.5 m resolution



science for a changing world




Timing Comparison of FDL Technique

Group

Single-Layer

Accuracy

Time
(1000 Images)

1-3 hours

10 hours

1 minute

Person-hours

1-3 hours
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CV X SPACE EXPLORATION X REMOTE SENSING
L ,-""""-—;.\ _:j;.-c_' -_'hﬁ':.-ﬁ _-.. =

Al X SPALE EXPLORATION 2
' MISO

SOLAR AND WIND POWER FORECASTING g,

L] |

REMOTE SENSING

GIS / REMOTE SENSING SCIENTIFIC
COMPUTING SYSTEMS

SYNOPTIC SKY SUVEY, SD0O X DATA
ANALYSIS AND"IMAGE
SEGMENTATION
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Closing Thoughts

Focus on applied Al solutions using mainstream deep learning
tools, thereby complementing and informing the research Into
novel Al technology being undertaken by other NASA teams.

Strong incentive for the private sector to participate due to
commercial opportunities that are implicit in the outcome;

Clear risk/cost reduction benefit to manned activities beyond
LEO, and for cis-lunar operations in particular;

Problem definitions for which relevant data has already been
collected and Is available for use under an open license.



By way of example, consider the application of Al to Space Weather

o Solar flares and associated proton storms pose a significant risk to astronauts
beyond LEO, and offer little or no warning. The Apollo “near miss” of the August 1972 solar flare
provides a dramatic example of this concern.

 Multiple industry sectors have a vested commercial interest in seeing
Improvements to solar flare predictions and better heliophysics modeling Iin
general. Examples include the power utilities, insurance companies,
communications and satellite operators, and the military.

 There are hundreds terabytes of well structured heliophysics data highly suited to deep learning
applications, including the archives from SDO/AIA, ACE, and SOHO.

 The image-centric nature of solar data (e.g. SDO — HMI and AlA) makes it easy to leverage the
rapid advances in image analysis that the Al community has contributed into open source.

 There are tantalizing indications that machine learning technigues can offer better predicative
capabilities over physics-based models, which leads many to believe that the use of neural net
deep learning will prove to be even more effective.
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