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Curiosity’s primary scientific goal is to explore and
quantitatively assess a local region on Mars’ surface as a
potential habitat for life, past or present

* Biological potential

* Geology and geochemistry
* Role of water

Surface radiation
(humans to Mars)

Curiosity’s Science Objectives




150-km Gale Crater contains a 5-km high mound of stratified rock. Strata in the lower
section of the mound vary in mineralogy and texture, suggesting that they may have
recorded environmental changes over time. Curiosity will investigate this record for clues
about habitability, and the ability of Mars to preserve evidence about habitability or life.

NASA/JPL-Caltech

Target: Gale Crater and Mount Sharp




Bibring et al (2006) from Mars Express IR observations
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j# Gale Crater strata may record a critical
(;'ufnﬁ'gﬁ transition in the history of the martian surface
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November 26, 2011 the Atlas V launch




NASA/JPL-Caltech/MSSS

BTW Heat shield separation captured
CURIOSITY DY Curiosity’s Mars Descent Imager
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The SAM team celebrates touchdown




Mastcam mosaic of Mount Sharp, descent
rocket scours, and rover shadow




NASA/JPL-Caltech/MSSS

=m Curiosity self-portrait using the arm-mounted
cum‘d&'ﬁ Mars Hand-Lens Imager, through dust cover
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Jake Matijevic also studied by Mastcam (image),
SV APXS, and ChemCam

CUR
APXS — alpha particle & X-ray
spectrometer a Canadian contribution

Composition is similar to alkaline
basalts on Earth produced by
partial melting of the mantle
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 NASA/IPL- CaItech/Unlv of Arlzona

Curiosity roved early on to Glenelg, where three distinct terrain
types meet to initiate her drill campaign

CURIOSITY




The conglomerate “Link” with associated
loose, rounded pebbles
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A scoop
full of Mars
sand

NASA/JPL-Caltech




10 = APXS derived compositions
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Elemental analysis from APXS on three missions

ﬁh‘m‘ﬁ shows similar compositions in martian fines
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The SAM suite

SAM suite instruments and major subsystems
e Quadrupole Mass Spectrometer
e 6-column Gas Chromatograph
e 2-channel Tunable Laser Spectrometer

* Gas Processing System

e Sample Manipulation System




Scooped
Rocknest
sample

SAM analyzes atmospheric gas or
vapors extracted from solids for
analysis in 3 instruments

'*’ﬁ*u

SAM sample P 11..
manipulation L
system

- —

."P

Gases are released as samples are
heated in SAM’s oven
He carrier gas for both EGA and GCMS

Measurement order for Rocknest
e EGA with QMS
e TLS
e Combined GC and QMS

Mass spectrometer
(QMS)

Hydrocarbon
trap

Tunable laser
spectrometer (TLS)
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The SAM gas flow diagram
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SAM’s commanding language allows us great flexibility in generation
of new sequences on Mars as we make discoveries — we keep a

duplicate SAM operational at NASA Goddard to test these scripts
o N R
. 7




Major gases released on heating

Lid] 1 First Rocknest
i I, sample analyzed by SAM

intensity

I
I oW e Sulfate

200 400
'NASA/IPL-Caltech/Goddard sample temp (deg C)

Hot Hotter

SAM found water, sulfates, carbonates,
and potentially perchlorates

mear  Gases released during SAM experiments
GURWSIF J P




Chlorinated compounds CH,Cl, CH,Cl,, CHCI;, and a 4 carbon chlorine containing

compound are detected by SAM

Chlorine compounds found in Rocknest
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Although the Cl in these organic compounds is Martian, it is
presently unclear whether the carbon is Martian or terrestrial.
This remains to be established with ongoing analysis, future
laboratory work, and experiments on Mars.

The Curiosity search for organics in other environments and
samples continues

SAM results show that the
Rocknest sand drift does
NOT contain abundant
organics

Organic compounds that
arrive from space in the
form of micrometeorites
may be transformed by a
variety of mechanisms

e Cosmic radiation

e Ultraviolet
radiation

 Hydrogen peroxide

e Dust induced
electrical
discharges

e Other oxidants in
soil/dust




Summary of SAM Rocknest results

Isotopic and Chemical Composition of Rocknest Soil - Significant Findings

Measurement Interpretation/Significance Documentation
Water EGA* 1.5-3 wt. % resource for future humans on Mars
Water isotopes | D/H > 5 x terrestrial = atmosphere exchange Leshin et al. Science 9/2013

Carbon Dioxide

Iron or magnesium carbonates

Oxygen & HCl Qxychloride phase likely hydrated Ca perchlorate | Glavin etal.JGR 9/2013

S0z and H2S Fe-sulfates or sulfites / reduced sulfur phases McAdam et al. sub. JGR
Major/Minor Hz0, SOz, COz, & 02, plus minor gases H2S, HCl, NHs, | Archer et al. submitted JGR
Gases NO, & HCN = chemical disequilibrium

Organics with No indigenous organics detected in Rocknest. Glavin etal.JGR9/2013
EGA & GCMS Validation of GCMS performance® Leshin et al. Science 9/2013

*EGA = evolved gas analysis **GCMS = gas chromatograph mass spectrometer analysis

*detection of simple chlorohydrocarbons with Gl from gxychloride phase and C mostly from traces of

derivatization compound in sample manipulation system.




Curiosity

self-portrait at Rocknest

from 55 MAHLI images

showing four scoop
bites and wheel scuff

Curiosity at Gale Crater
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White (gypsum?) veins in Yellowknife Bay




Crossbedded Iayers in Yellowknlfe Bay
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First drilled hole on Mars — February 6, 2013




Rocknest sand shadow John Kilein drill powder

/JPL-Caltech/Ames The drill powde
phyllosilicates (clay minerals), indicating
sustained interaction with water

| X-ray diffraction patterns from Rocknest (left)
josity and John Klein (right)




NASA/JPL-Caltech/GSFC
Water

Carbon
Dioxide

QMS signal

Forms of Sulfur

SAM analysis of the drilled rock sample reveals water, carbon dioxide,
oxygen, sulfur dioxide, and hydrogen sulfide released on heating. The release
of water at high temperature is consistent with smectite clay minerals.

Major gases released from John Klein sample
and analyzed by SAM




An AnC|en |table Envwonment
at Yellowknife Bay

t W\N I

The regional geology and fine-grained rock suggest that the
John Klein site was at the end of an ancient river system or
within an intermittently wet lake bed

The mineralogy indicates sustained interaction with liquid
water that was not too acidic or alkaline, and low salinity.
Further, conditions were not strongly oxidizing

Key chemical ingredients for life are present, such as carbon,
hydrogen, nitrogen, oxygen, phosphorus, and sulfur

The presence of minerals in various states or oxidation would
provide a source of energy for primitive biology

Detailed discussion of Yellowknife Bay results
- Stay tuned -




‘Flavors’ of SAM Atmospheric Measurement5‘<,&u@.
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SAM QMS mass spectrum for Sol 45
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MSL’s N, lower & Ar greater than Viking’s, but Ar/N,?
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Pressure (mbar)

SAM/QMS Atmospheric Measurements - temporal
e Recent measurements span almost the full

Southern Summer season, with day/night coverage
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TLS CO,, H,O spectral regions

Scan region 1 — CO,, H,0O
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TLS D/H Data Compare Well with

Previous Telescopic Measurements

3
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m/z 36, 38 QMS Signal (cps)
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MSL/SAM QMS enrichment experiment on sol 231 (Atreya et al. 2013)




3°Ar/32Ar - a robust signature of atmospheric loss from Mars
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| Primordial argon (Ar)

Heavy and light versions of atoms (ISOTOPES) in

carbon dioxide and argon are key signhatures of
atmospheric loss
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EETA79001 (1979 ANSMET expedition) found on
Antarctica ice contains martian atmospheric gas



Isotopes point to atmospheric loss

36Ar/38Ar
40Ar/3Ar
14N/15N
oD
613CVPDB
813CVPDB

18
0 C)SMOW

42 +0.1
1900 + 300
173+9
4950 + 1080
45 + 12 %o
46 + 4 %o
48 £ 5 %o

Atreya et al. (2013, GRL)

Mahaffy et al. (2013, Science)
Wong et al. (2013, GRL, submitted)
Webster et al. (2013, Science)
Mahatffy et al. (2013, Science)
Webster et al. (2013, Science)
Webster et al. (2013, Science)

The SAM instrument suite measures
atmospheric isotope ratios
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' ﬂUE" MAVEN Will Measure the Drivers,
Reservoirs, and Escape Rates

CU/LASP » GSFC » UCB/SSL » LM « JPL
Plasma Processes
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» MAVEN will determine the present * Essential measurements allow
state of the upper atmosphere and determination of the net integrated loss to

today’ s rates of loss to space. space through time.



Oceans, Lakes  Hydrates
Termites 3% 1%

4%

Biomass Burning
8%

Wetlands
25%

Seepage (6%),
Mud Volcano (1%),
Geothermal (19)

8%
Landfills,
Waste Ruminants
9%, 15%
Rice Agriculture Natural Gas,
11% Coal Mines

16%

Life as we know it produces methane,
90-95% of 1750 ppbv on Earth




Methane, a potential biomarker
Water-rock reactions; UV degradation of surface organics; Methanogenesis

EXOGENOUS —
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E;Liggg Mars Rover Finds No Evidence of Burps

o/19/2013 | and Farts

2013-09-19 14:00 | 1 Comment
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Compared 30
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Atmospheric Volatile and Isotope Composition - Significant Findings

Measurement

Interpretation/Significance

Documentation

Volatiles:
40Ar, Nz #°Ar/Nz

“0Ar and Nz are each measured at 2% by volume,
giving 4°Ar /Nz2=1, which is 70% greater than the
Viking value, implying a more vigorous rate of 4Ar
outgassing.

Mahaffy et al., Science 2013;
Atreya etal., LPSC 2013

Volatiles:
Methane (CH4)

No methane was detected. An upper limit of 1.3
ppbhyv is calculated, which implies reduced levels of

methanogenesis, serpentinization and/or UV

degradation of surface organics, if any.

Webster et al., Science 2013

Volatiles:
COz 4%Ar, N2

CO: tracks the seasonal change in surface pressure,
and 4°Ar and N: track each other and the COz,

clearly indicating seasonal change of volatiles.

Trainer et al, in prep. 2013

Isotopes: 36Ar/38Ar=4.2+0.1 is the first high precision Atreya etal, GRL 2013
Primordial measurements of this ratio, and provides the most
argaon 3%Ar/38Ar compelling evidence yet that “martian’ meteorites
are from Mars, and clearest signature of
substantial loss of atmosphere in the past 4 Byr.
Isotopes: The COz2 and Hz0 isotopes, measured at §13C=46x4 Mahaffy et al., Science 2013;

§13C, 8180, §D

%0, 6180=48+5 %o and §D=4950+1080, provide
additional strong evidence of loss of atmosphere in

the past 4 Byr.

Webster et al., Science 2013;
Franz et al., Planet. Space
Sci. 2013

Isotopes: 4N //15N= 173+13 ratio is similar to Viking data, but | Wong et al., GRL 2013
nitrogen *“N /15N | more precise. Combined with SAM’s 4°Ar data, it

requires reassessment of the degree of mixing

between the atmospheric and mantle gas

components in certain martian meteorites.
Isotopes: *Ar/3%Ar =1900+300 is 60% of the Viking value, Mahaffy et al., Science 2013
“0AYr/36AT but in far better agreement with SNC'’s.




Unfinished business - Atmosphere

¢ Seasonal monitoring of volatiles over one Mars year

¢ Seasonal and diurnal monitoring of CO, and H,0O isotopes

¢ Enrichment experiments to measure Xe and Kr isotopes
¢ Enrichment experiments to measure D/H precisely

¢ Pre-enrichment to increase CH, detectability to 0.1 - 0.02 ppbv




Sol 439

Cooperstown . ..




To see what was domg one soI .
They got a big thrill

To see over a hill

Curiosity taking a stroll

Curiosity limerick by Dr. J.T. Nolan

s Curiosity is now on its way to study the
CURIDSITY Layers, Canyons, and Buttes of Mount Sharp




