Planetary Science Division Status Report

James L. Green, Director Planetary Science
November 21, 2014

Planetary Science Subcommittee
Outline

• Planetary Upcoming Mission Events
• Recent Accomplishments
• Mars Program Update
• MAVEN Arrives at Mars
• Comet Siding Spring (CSS) Encounter with Mars
• Use of Astrophysics Telescopes
• SMD EPO CAN
Planetary Science Missions Events as of July 24, 2014

2014

July – *Mars2020* Rover instrument selection announcement
August 6 – 2nd Year Anniversary of *Curiosity* Landing on Mars
September 21 - *MAVEN* inserted in Mars orbit
October 19 – Comet Siding Spring encountered Mars
September - *Curiosity* arrives at Mt. Sharp
November 12 – ESA’s *Rosetta* mission lands on Comet Churyumov–Gerasimenko
November 30 – Launch of *Hayabusa-2* to asteroid 1999 JU₃

2015

January – Discussions with Indian Space Research Organization (ISRO)
March - *MESSENGER* spacecraft impacts Mercury
Late March – *Dawn* inserted into orbit at dwarf planet Ceres
April - Europa instrument Step 1 selection
May - Discovery 2014 Step 1 selection
July 14 – *New Horizons* flies through the Pluto system

2016

March – Launch of Mars missions *InSight* and ESA’s *ExoMars Trace Gas Orbiter*
March - Europa instrument step 2 selection
July - *Juno* inserted in Jupiter orbit
July – ESA’s *Bepi Columbo* launch to Mercury
August - Discovery 2014 Step 2 selection
September - *InSight* Mars landing
September – Launch of Asteroid mission *OSIRIS – REx* to asteroid Bennu
September - *Cassini* begins to orbit between Saturn’s rings & planet
Recent Accomplishments

• Released Discovery AO - November 5, 2014
 – Step-1 proposals due in February 2015
• Europa Instrument AO - October 17, 2014
 – Currently under review
• R&A all but one core program has had review since restructuring (Rall presentation)
 – Community is actively involved and reviewers generally pleased with process
Mars Program
Mars Missions this Decade

Operational
Launched 2001–2013

- Odyssey
- ESA Mars Express
- Mars Reconnaissance Orbiter
- MAVEN Aeronomy Orbiter
- ISRO Mars Orbiter Mission

2016
- ESA Trace Gas Orbiter (Electra)

2018
- InSight

2020
- Opportunity
- Curiosity – Mars Science Laboratory
- ESA ExoMars Rover (MOMA)

2022
- 2020 Science Rover

Follow the Water → Habitable Environments → Seeking Signs of Life → Future
Off-Earth Odometry Records

- Opportunity (2004-Present)
- Lunokhod 2 (1973)
- Apollo 17 LRV (1972)
- Apollo 15 LRV (1971)
- Apollo 16 LRV (1972)
- Lunokhod 1 (1970)
- Curiosity (2012-Present)
- Spirit (2004-2010)
- Sojourner (1997-1998)
- Yutu (2013-Present)

Kilometers
MAVEN: Mars Orbit Insertion

<table>
<thead>
<tr>
<th>Sept</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOI Rel</td>
<td>-9</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- **MOI Countdown (Hrs)**
 - TCM-4
 - CLT 27 Hrs
 - Battery 100%
 - Pre-MOI Uplinks
 - Prop Tank Preheat
 - CMIC Copies
 - LV30 Open
 - Phase = MOI
 - Start moi_nom
 - MOI A1 End

- **Incoming Trajectory**
 - 5.5 hr Orbit
 - 4.5 hr Orbit
 - 35 hr Capture Orbit
 - Periapsis: 550km
 - Inclination: 75deg

- MOI will occur on 9/21/14 (ET)
- Sequence activates 3 days out
- Emergency TCM 5a and 5b opportunities at MOI-24 hours and MOI-6 hours
- Configure for GoFast Recovery (MOI-1 hour)
- In contact with earth during the entire burn sequence
- Primary operations at LM-Denver, backup operations at Goddard
Escape of Climate Controlling Gases

- In 35 hour orbit obtained unique observations

Bruce Jakosky, UCB
• On Mars, ozone is primarily destroyed by the combined action of water vapor and sunlight
• The cold, dark conditions near the pole allow ozone to accumulate

Bruce Jakosky, UCB
Overview of Siding Spring

- C/2013 A1 (Siding Spring) is an Oort cloud comet discovered on January 3, 2013, by Robert McNaught at Siding Spring Observatory at 7.2 AU
- Comet C/2013 A1 took millions of years to come from the Oort cloud
- It is believed that this is its first passage by the Sun
- On October 19, 2014, passed within ~130,000 km from Mars
How NASA Assets Observed COMET SIDING SPRING

Closest Approach to Mars on October 19, 2014

BOPPS, a sub-orbital balloon, observed the comet in September 2014

NASA's Infrared Telescope Facility observed the comet in Jan., Sept. and observed Mars in Oct. 2014

Mars Reconnaissance Orbiter observed the comet in October 2014

Mars Odyssey observed the comet in October 2014

ESAs Mars Express observed the comet and Mars in October 2014

MAVEN observed the comet and Mars in October 2014**

Opportunity Rover observed the comet in October 2014

Curiosity Rover made observations in October 2014

Hubble observed the comet in Oct. 2013 and Jan/Mar 2014,* and observed the comet and Mars in October 2014

Swift observed the comet multiple times since November 2013

STEREO detects the comet in its observations

SOHO detects the comet in its observations

NeoWISE observed the comet in January, July and September 2014

Spitzer observed the comet in March and October 2014

Kepler observed the comet in October 2014

Chandra observed the comet in October 2014

*Comet Image shown was processed by Hubble on March 11, 2014
**India’s Mars Orbiter Mission obtained orbit 09/24/14

http://mars.nasa.gov/comets/sidingspring
http://cometcampaign.org

#JOURNEYTOMARS

NASA Mars spacecraft took advantage of a unique and unexpected science opportunity for close study of a visitor from the edge of the solar system, along with possible effects on Mars’ atmosphere.

Early results probe the size and properties of the comet’s nucleus and the properties of dust and gas in the comet’s coma. Comet material also blanketed most of the northern hemisphere of Mars.

NASA space observatories that orbit the Earth also observed the comet and Mars during the close encounter.
Emission from ionized magnesium in Mars’ atmosphere following the Siding Spring Meteor Shower, imaged by MAVEN’s Imaging Ultraviolet Spectrograph.

Nick Schneider, UCB
Rosetta Mission New Results
NASA Contribution to ESA’s Rosetta Mission

1. 3 instruments plus a significant portion of the electronics package for another (MIRO, ALICE, IES, and ROSINA DFMS Electronics)
2. 3 Principal Investigators, Interdisciplinary Scientist
3. 40 Co-Investigators and researchers
4. Deep Space Network 70 meter and 34 meter support
5. Scheduling software for science observations
6. Multi-mission Ephemeris Support tool
7. Comet modeling
8. Shadow navigation for flight dynamics verification
9. Outreach and media products
10. Support for ESA’s Amateur Ground Observing Campaign
NASA Hardware Contribution

ALICE (an ultraviolet imaging spectrometer) will map the comet’s nucleus for pockets of both dust and ice - Alan Stern, SWRI

MIRO (Microwave Instrument for the Rosetta Orbiter) will remotely examine the vicinity for signs of water coming off the nucleus and will construct temperature maps - Sam Gulkis, JPL

IES (Ion and Electron Sensor) will look for examples of direct interaction between the solar wind and the nucleus - James Burch, SWRI

ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) will identify gases sublimating from the comet. NASA is providing ROSINA’s DFMS (Double Focusing Mass Spectrometer) Electronics - Stephen Fuselier, SWRI
NASA Participation in the Rosetta Payload

Orbiter Teams

1. **ALICE** - UV spectrometer
2. **CONSERT** - tomography/radio sounding
3. **COSIMA** - chemistry
4. **GIADA** - dust analysis
5. **IES** - ion and electron sensor
6. **ICA** - plasma analyzer
7. **MAG** - magnetometer
8. **MIDAS** - atomic force microscope (dust particles)
9. **MIP** - magnetic impedance probe
10. **MIRO** - microwave spectrometer / radiometer
11. **LAP** - Langmuir probe
12. **OSIRIS** - camera
13. **ROSINA** - mass spectrometer
14. **RSI** - radio science
15. **VIRTIS** - IR spectrometer

Lander Terms

16. **APXS** - X-ray spectrometer
17. **CIVA** - lander mass spectrometer
18. **COSAC** - lander mass spectrometer
19. **MODULUS** - gas analyzer
20. **MUPUS** - probe
21. **ROLIS** - lander descent camera
22. **ROMAP** - lander magnetometer/material magnetism
23. **SESAME** - seismic data
24. **CONSERT (2)** - tomography/radio sounding
25. **SD2** - drill
26. **PTOLEMY** - gas analyzer

Legend:
- NASA hardware contribution
- NASA Investigator Participation
Rosetta at Comet Churyumov-Gerasimenko

Square is the site for the Philae lander
Yellow circle shown to size of lander
Philae will attempt landing on Nov. 12th

Credit: ESA/Rosetta/OSIRIS
Stuart Atkinson, Rosetta Ameteur Campaign Team
Use of Astrophysics Telescopes
Wide-field Infrared Survey Explorer (WISE)

NEOWISE Restart

Image Quality Comparison

An intermediate spiral galaxy, NGC 4654, in the constellation of Coma Berenices. This galaxy is ~55 million light years away (imaged in 3.4 \(\mu \text{m} \) [W1] and 4.6 \(\mu \text{m} \) [W2]). There is almost no degradation in image quality!

An Initial Reactivation Image

872 Holden
large main belt asteroid
~30 km diameter
\(H_{\text{mag}} = 9.9 \)

New NEO Discovery Talley

<table>
<thead>
<tr>
<th>Designation</th>
<th>Size (m)</th>
<th>Albedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 YP(_{139})</td>
<td>660</td>
<td>0.01</td>
</tr>
<tr>
<td>2014 AQ(_{46})</td>
<td>860</td>
<td>0.03</td>
</tr>
<tr>
<td>2014 AA(_{53})</td>
<td>710</td>
<td>0.06</td>
</tr>
<tr>
<td>2014 BG(_{60})</td>
<td>770</td>
<td>0.02</td>
</tr>
<tr>
<td>2014 BE(_{63})</td>
<td>600</td>
<td>0.02</td>
</tr>
<tr>
<td>2014 CY(_{4})</td>
<td>510</td>
<td>0.04</td>
</tr>
<tr>
<td>2014 CF(_{14})</td>
<td>790</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Plus, new comet (C/2014 C3, aka ‘Comet NEOWISE’)

03/07/14
Astrophysics Division Telescopes

- HST surveys approved:
 - NH KBO (3 found) & Europa plumes
 - Hubble DD program to execute every year until the end of mission.
 - A total of 29 orbits/yr for Cycles 22-24, 41 orbits per Cycle thereafter.
 - Two global maps each for Jupiter, Uranus, Neptune and Saturn (starting after end of Cassini).
 - More planetary proposals to HST are encouraged!
- Spitzer operations extended for the next two yrs
 - Astrophysics and the Planetary Science Divisions have requested observing time commitments for FY15
- Spitzer & Keck solicit high priority investigations of solar system objects:
 - Planetary science proposals reviewed, and selected in accordance with current Spitzer and Keck proposal practice
 - PSD strongly encourages you to submit Planetary proposals for time
- K2 Mission will make use of the Kepler spacecraft and its assets to expand its discoveries. K2 will provide opportunities for solar system observations.
 - Generally, slow moving sources and major planets between V=4 and 20 will be possible targets.
 - K2 has a funded GO program accepting proposals twice a year.
Spitzer Cycle-11 Overview

- 157 proposals received - 41,970 hours!
 - 137 proposals in Cycle-10 - 31,817 hours
- Oversubscription of ~5.4

- 15 proposals - twice as many as Cycle-10
- 5 times the hours requested in Cycle-10

<table>
<thead>
<tr>
<th>SciCat</th>
<th>Number</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR SYSTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>asteroids</td>
<td>5</td>
<td>142.3</td>
</tr>
<tr>
<td>comets</td>
<td>4</td>
<td>597.8</td>
</tr>
<tr>
<td>KBO</td>
<td>2</td>
<td>44.3</td>
</tr>
<tr>
<td>NEO</td>
<td>2</td>
<td>2710.1</td>
</tr>
<tr>
<td>satellites</td>
<td>2</td>
<td>19.7</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>3514.2</td>
</tr>
</tbody>
</table>
Astrophysics Mission & Solar System Science

Planetary Science and Astrophysics divisions held joint workshops at the DPS:

A) SOLAR SYSTEM OBSERVATIONS WITH THE K2 MISSION
TUESDAY, NOVEMBER 11, 2014
Discuss the scientific capabilities of the K2 mission for Solar System science. This workshop consisted of:

1. Presentations on the K2 mission
2. Solar System Observations with the mission, and
3. Discussion with the broader community to identify observatory capabilities and envision future opportunities.

B) JWST WORKSHOP ON POTENTIAL SCIENCE INVESTIGATIONS
SUNDAY, 9 NOVEMBER, 2014
Provide community input on potential solar system science with JWST. This workshop consisted of:

1. Presentations offindings from the focus groups,
2. Discussion with the broader community to identify gaps in the focus-group science use cases and in envisioned observatory capabilities. These outputs from the workshop will be used to inform ongoing development and pre-launch operational studies.
SMD EPO CAN
SMD EPO Draft CAN

• Draft Cooperative Agreement Notice (CAN) released for community comments Thursday November 6, 2014

• Draft text downloadable from the NSPIRES web page at: http://nspires.nasaprs.com/

• Objectives:
 – Enabling STEM education
 – Improving U.S. science literacy
 – Advancing National education goals and
 – Leveraging science education through partnerships

• Select one or more focused, science discipline-based team(s)

• While it is envisioned that multiple agreements may be awarded, selection of a single award to support all of SMD science education requirements is not precluded.

• Awards are anticipated NLT September 30, 2015
Anticipated SMD Science Education CAN schedule:

- Final CAN Release Date (target).................... NET December 2014
- Notice of Intent to Propose Deadline........... 30 days after final CAN release
- Proposal Deadline... 90 days after final CAN release
- Selections Announced (target)...................... Summer 2015
- Projects Begin (target)................................. October 1, 2015

Contact:
Kristen Erickson
Science Mission Directorate
NASA Headquarters
Washington, DC 20546
E-mail: CANsci-ed@hq.nasa.gov
Questions?