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Overview Uity
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m Control & Planning safety R, e

e Breaking robots for fun and profit |

® Perception safety

e It's a bird. It's a plane.
It's ... what the heck is that?

mEdge cases

e Back to breaking robots for r T S e
fun and profit
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NATIONAL ROBOTICS

NREC: 30+ Years Of Cool Robots NREC
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Before Autonomy Software Safety il
B The Big Red Button era
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APD (Autonomous Platform Demonstrator)

Safety critical speed limit enforcement

NATIONAL ROBOTICS

NREC TARGET GVW: 8,500 kg
ENGINEERING CENTER TARGA;Er:I\/-edeoE’EIEFBeisesTAocolM(Ears‘e{ZI(::At Date: 07 OCT 2009
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Traditional Valldatlon Meets Machine Learmng ﬁiﬁ{'vz?m

m Use tradltlonal software

Operation
safety where you can Operstiage), Verification Julands

Validation
Project » System
Definition d erification
..BUT.. i Validation

. ration, .
Detailed Tes and Project

Design Verification Test and
Integration

® Machine Learning
(inductive training)

e No requirements Time
— Training data is difficult to validate

e No design insight
—Generally inscrutable; prone to gaming and brittleness
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Safety Envelope Approach to ML Deployment MElg

m Specify unsafe regions

m Specify safe regions
e Under-approximate to simplify

® Trigger system safety response
upon transition to unsafe region

FAILSAFE ACTIVATED

University

¥

N FAILSAFE ACTIVATE
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SAFE
OPERATIONAL
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FAILSAFE ACTIVATED
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Architecting A Safety Envelope System (et

B “Doer” subsystem

e Implements normal, untrusted functionality

B “Checker” subsystem — Traditional SW
e Implements failsafes (safety functions)

® Checker entirely responsible for safety
e Doer can be at low Safety Integrity Level
e Checker must be at higher SIL

(Also known as a “safety bag” approach)

Doer/Checker Pair
Low SIL

SAFETY ‘= ; OUTPUTS

SHUTDOWN &

High SIL
Simple
Safety
Envelope
Checker

REDUNDANT INPUTS
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Robustness Testing T

B ASTAA: Automated Stress Testing of Autonomy Architectures

e Key idea: combination of exceptional &
normal inputs to an interface

® Example: Ground Vehicle network
e Test Injector
— Selectively modifies CAN messages on the fly
— Modification based on data type information
e Invariant monitor

— Reads messages for invariant evaluation
— “Checker” invariant monitor detects failures

B Commercial tool build-out:

e Edge Case Research Switchboard
(software & hardware interface testing)

ASTAA Test Runner

Test Invariant
Injector Monitor
\ F 3
Interception test Parameters for checking invariants
values (e.g. no throttle while braking)
from test case
) s ~ )\
By-wire 5 ——>
controllers Status messages — = Modified EC
(steer, < 8 status
brake, (@) :q—-.! messages U
throttle) | £
Commands Commands
"/ (Forwarded) \_ \ y
| )
Y —
Existing CAN BUS ECU isolated on

ASTAA CAN bus

DISTRIBUTION A — NREC case number STAA-2013-10-02

© 2018 Philip Koopman 9



Carnegie
Mellon
University

Robustness Test + Monitor = ASTAA

Automated Stress-Testing for Autonomy Architectures

Test Specification and Execution Overview

/QSTAA Test Spec (XML)

Interface Definition
Ports & Prolocols

Existing
Documentation
for SUT

Message
Dictionary

(ICD, IDD) Constructors &
Destructors

Sy.lstem Invariants Definition
Requirements Mode State Machines

(SRS) P
Saf&ll‘y z

Requirements

Irrvprinnt List
Paramd == PLimit1
ondition™

Invariant Failure ||
Destructors

Define ASTAA Test Specification
{guided manual process)

Exceptions

User Dorved Base
Typas Types Types

Test Generator
Meassage Types

Type Exceplions
Test Command
Sequences

Execute Test Generator
(automated process)

ASTAA Test Runner

Test Case (XML)
Invariant

Invariants . . 5
Menitors 12+ 3
1

Test g E
Test Command -
ko +
tt—
Maodule Manager

Interface
Definition

Prolocal | Prodooo
Mosiile Mol

!t

DISTRIBUTION A -
NREC case numbers
STAA-2012-10-23,
STAA-2013-10-02

Execute Test Cases with Test Runner
(automated process)

© 2018 Philip Koopman 10



Researchers evaluated 150 bugs from 11 distinct projects over 4 years [|CSE 201 8]

SAF 1939

E:nmmunlc.a'.u:-n

From “RIOT Expanded Technical Brief, NAVAIR Public Release- 2016-842 ‘Approved for Public Release;
distribution is unlimited’.
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Robustness Testing Finds Problems cllgy 8

® Improper handling of floating-point numbers:
e Inf, NaN, limited precision
®m Array indexing and allocation:
e Images, point clouds, etc...
e Segmentation faults due to arrays that are too small
e Many forms of buffer overflow with complex data types
e Large arrays and memory exhaustion
® Time:
e Time flowing backwards, jumps
e Not rejecting stale data
B Problems handling dynamic state:
e For example, lists of perceived objects or command trajectories
e Race conditions permit improper insertion or removal of items

e Garbage collection causes crashes or hangs S—
DISTRIBUTION A - NREC case number STAA-2013-10-02 © 2018 Philip Koopman 12
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Non-Machine Learning Robustness Lessons o ity

® Protect your robots from data assumptions

e Don't trust that your configuration is valid
e Time is not always monotonic

e Semantically redundant field mismatches

B Floats and NaNs useful but dangerous
e Do not use floats as iterators
e NaNs propagate
B Plan for the system to fail
e Nodes should not fail silent
e Good logging is invaluable
® Common sense?
e (Not so common it turns out)

Robot-Arm Collision Vulnerability
Discovered with STAA

Send of “infinity” floating point joint angle
causes unsafe wind-milling
© 2018 Philip Koopman 13
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Validating an Autonomous Vehicle Pipeline oty
0P
i S
O TRAJECTORY VEHICLE | o &
g —» PERCEPTION 3 PLANNING = =y =~it1on P lconTrOL %
LLI =
42 Machine Randomized Control Autonomy 5()
Learning & Heuristic Systems Interface To
Based Algorithms Vehicle
Approaches = Control
= Run-Time Software =» Traditional
= 7?7 Safety Envelopes  Validation Software
=» Doer/Checker =» Doer/Checker Validation
Architecture Architecture

Perception presents a uniquely difficult assurance challenge

© 2018 Philip Koopman 14
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Brute Force Road Testing ittty

m If 100M miles/critical mishap... _ ##WolframAloh:

e Test 3x—10x longer than mishap rate _ —
= Need 1 Billion miles of testing

4.03 million mi

® That's ~25 round trips
on every road in the world O
e With fewer than 10 critical mishaps & “

© ZU 18 PNiIp Koopman 19
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Brute Force AV Validation: Public Road Testing el 8

® Good for identifying “easy” cases
o Expenswe and potentlally dangerous

© 2018 Philip Koopman 16
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Did We Learn The Right Lesson from Tempe‘? el 8

= NOT: Blame the victim R R
e Pedestrian in road is expected v T e

s
iy detected X
' Sl as bicycle /
S

® NOT: Blame the technology

e Immature technology under test
— Failures are expected!

® NOT: Blame the driver
e A solo driver drop-out is expected

B The real AV testing lesson:
= Ensure safety driver is engaged €
e Safety argument: Driver alert; time to respond; disengagement works

© 2018 Philip Koopman 17
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Can Safety Driver React In Time? malgy

m Safety Driver Tasks:
e Mental model of “normal” AV

e Detect abnormal AV behavior
e React & recover if needed

m Example: obstructed lane Jan 20, 2016; Handan, China
e Does driver know when to take over? e E =

e Can driver brake in time?
— Or is sudden lane change necessary?

m Example: two-way traffic
e What if AV commands sudden left turn into traffic?

© 2018 Philip Koopman 18
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Closed Course Testing U orsity

m Safer, but expensive
e Not scalable
e Only tests things you have thought of!

Volvo / Motor Trend

© 2018 Philip Koopman 19
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Simulation U orsity

® Highly scalable; less expensive
e Scalable; need to manage fidelity vs. cost
e Only tests things you have thought of!

http://bit.ly/2toFdeT

ApO"O © 2018 Philip Koopman 20
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What About Edge Cases? cllgy 8
®You should expect the ™
extreme, weird, unusual [ person 0.0 |
e Unusual road obstacles
e Extreme weather
e Strange behaviors potlery
mEdge Case are surprises Ty, —

e You won't see these in testing
=» Edge cases are the stuff you didn’t think of!

© 2018 Philip Koopman 21
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Just A Few Edge Cases Gl

® Unusual road obstacles & obstacles
m Extreme weather
m Strange behaviors

https://goo.gl/J3SSyu

https://en.wikipedia.org/wiki/Magic_Roundabou

THE MAGIC ROUNDABOUT
Ring road
Cirencester
AA4289 \
—®. .@‘ Marlborough
Town @ Burford
centre Oxford
H]
: : A4312
http://bit.ly/2tvCCPK . ] T | i paia i s i

© 2018 Philip Koopman 22
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Why Edge Cases Matter Mellows

B Where will you be after 1 Billion miles of validation testing?

m Assume 1 Million miles between unsafe “surprises”
e Example #1:
100 “surprises” @ 100M miles / surprise
— All surprises seen about 10 times during testing
— With luck, all bugs are fixed

™

e Example #2: : HE CE
100,000 “surprises” @ 100B miles / surprise  XS@) o
- Only 1% of surprises seen during 1B mile testing TR
— Bug fixes give no real improvement (1.01TM miles / surprise)

© 2018 Philip Koopman 23



PROBABILITY OF SURPRISE

Carnegcie

The Real World: Heavy Tail Distribution(?) i

Common Things Edge Cases

l Seen In Testinﬂ | | Not Seen In Testing |

Random Independent Arrival Rate (exponential)
Power Law Arrival Rate (80/20 rule)

(Heavy Tail Distribution)

Many Different,
Infrequent Scenarios
Total Area is the same!

.

TOTAL TESTING TIME > >

© 2018 Philip Koopman 24




TIME BETWEEN EVENTS
(LOG SCALE)

Carnegie

The Heavy Tail Testing Ceiling il

FAULT INJECTED
TRAINING

HERE THERE BE DRAGONS!
(UNKNOWABLE UNKNOWNS)

PEOEO, 'gc'm""'""

SAFETY L
UNIQUE SURPRISES

“HARD SCENARIO” (MOSTLY UNSEEN IN TRAINING)

WEIGHTED TRAINING

RARE EVENTS
(SEEN ONCE IN TRAINING)

BRUTE FORCE
TRAINING UNUSUAL EVENTS

EVERYDAY EVENTS

# OF TRAINING MILES (LOG SCALE) >
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Malicious Image Attacks Reveal Brittleness el 8

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

https://goo.gl/5sKnZV

Car Not a Magnified Magnified Not a

Car Difference Difference Bus

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013). © 2018 Philip Koopman 26
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ML Is Brittle To Environment Changes el 8

®m Sensor data corruption experiments

Synthetic Equipment Faults

Gaussian blur

\ o ik | \ Uy = lm' =2 Uy = 97.8m
Correct detection False negative Defocus Haze

Contextual Mutators

Defocus & haze are similarly
a significant issue

Exploring the response of a DNN to environmental
perturbations from “Robustness Testing for

Perception Systems,” RIOT Project, NREC, DIST-A. © 2018 Philip Koopman 27
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What We're Learning With Hologram @ Case

H A scalable way to test & train on Edge Cases

P —— . N

‘[ 7B\
> ‘:& E> / E> : g*\g/b*

i —, \
) — \ .
o N Your fleet and Hologram Hologram Your CNN
e ¢%"  your data lake cluster tests cluster trains becomes
your CNN your CNN more robust

@logram

SAFER PERCEPT ICGIMN FER
AUTONOMY © 2018 Philip Koopman 28
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Context-Dependent Perception Failures @ Casal

® Perception failures are often context-dependent
e False positives and false negatives are both a problem
e This is an active research area ... technology still in development

False positive on lane marking False negative when False negative when
False negative real bicyclist person next to light pole in front of dark vehicle

Will this pass a “vision test” for bicyclists? © 2018 Philip Koopman 29
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Ways To Improve AV Safety : el 8
Thanks'

B More safety transparency
e Independent safety assessments
e Industry collaboration on safety

® Minimum performance standards
e Share data on scenarios and obstacles
e Safety for on-road testing (driver & vehicle)

= Autonomy software safety standards
e Traditional software safety ... PLUS ...
e Dealing with uncertainty and brittleness

e Data collection and feedback on field failures | /i sanmodnes
© 2018 Ph|||p Koopman 30



