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National Academies Astro2020 Decadal Survey :

Astro 2020: “Great Observatories Mission and Technology Maturation Program would providé :

significant early investments in the co-maturation of mission concepts and technologies.”

NASA: Great Observatory Maturation Program (GOMAP)




National Academies Astro2020 Decadal Survey :




Why GOMAP? :

JWST EXCEEDS COST CAP, LAUNCH DELAYED TO 2021 RSO

JUNE 28TH, 2018

1 Shares Tuﬁ?’j.m

For the second year in a row, NASA’s budget request proposes to cancel the WFIRST astrophysics flagship
mission. (credit: NASA)

Cost challenges continue for NASA science missions

by Jeff Foust
Monday, March 25, 2019




Why GOMAP?

Silver Line’s second phase was to be
different. It fell into the same trap.

During eight years of construction, the new $3 hillion stretch of rail recorded multiple problems, cost overruns and four
years of delays

Federal 1|

+ major ra
decades

COST OVERRUN AT BALTIMORE
STADIUMS MAY EXCEED 50 PERCENT

By Robert Barnes

August 31, 1988

ANNAPOLIS, AUG. 30 -- The cost of building a new sports stadium complex in downtown Baltimore may
exceed original estimates by as much as $110 million, an increase of more than 50 percent, Maryland

legislative leaders were told today.

“From a database of more than 16,000 megaprojects from 20-plus different fields in 136

countries, only 0.5 percent are delivered on cost, on schedule, and with original stated
benefits.” (Flyvbjerg, B., Gardner, D., “How Big Things Get Done” ©2023)
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Why GOMAP? Decades of research-based consensus on megaprojects

Independent Mission Concept  GAO Report on SMD Internal  National;Academy
Research Papers Reports Major Projects  Study on Flagship Recommendatioh
Projects
Challenges and Potential Solutions to Develop and Fund ({’?‘f/ : " SciencEs MepiCIE
NASA Flags'"p Missions L U Y (0] | R u(:;d{'lt(?m. Accountabilty Office B e

Pathways to Dlscovery in

Astronomy and Astrophysms -
NASA Assessments of ;
Major Projects

; - for the 2020s

LMS

arge M/SS/bn
Study Report

SPONSORED BY THE SCIENCE MISSION DIRECTORATE (SMD)

Figure 1. NASA Flagship Mission Cost vs. Launch Date

Www.nasa.gov

GAO-22-105212

A variety of documents from internal, external, and oversight groups all point to

a consistent set of problems & solutions for large/flagship projects, across

6
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How Do Complex Things Get Done On Time?

* A successful flagship starts long-term work before staffing ramps up, and details ge_t

refined as the trade space continually gets more focused.

Science
Requirements

Mission
| Architecture
Decadal
~ Science
Objectives .
Technology
Mission
~ Design

Timeline

v

¥



How Do Complex Things Get Done On Time?

Define your scope earlier. Consider previous
Build in robust margins. investments and
landscape

opportunities

Design as a system
with long-term
needs in mind

Know that you can build it
before you start.

s . 4
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How Do Complex Things Get Done On Time?

Science, Technology, Define your scope earlier.

Architecture Review Team Build in robust margins.

(START)

e Start with Decadal
science

* Quantify all science
objectives including their
break points & slope of
performance degradation

* Identify
observatory/instrument
capability needs

P

. .



Define your scope earlier. Build in robust margins. 10

Acting groups:
et START (Science, Technology, Archltecture
| s Review Team) < * "4 "
Pathwa_ys to Dtscnvery in ' : TR KT
Astronomy and Astrophysws . Precursor Science teams' | ' -

- for the 2020s

Extreme Precision Radial Velocity teams
| . - N

*

Responsibility: .
HWO Scope P

Objectives: i
List HWO Goals, Objectives, and Types of 57
Observations = = . ;

Roadmap to full/final Sciehte Traéeabi.lity*

-

Matrix (STM) =~ Py .-10'{"



Define your scope earlier. Build in robust margins.

Define scope, including sufficient

margins to avoid redesigns.

. K

Example: Need to define margins
on goal of 25 Exo-Earths/100 Exo-

7-m telescope
systems

(inscribed diameter)
6-m telescope '

(inscribed diameter)

Expecte
d

31

Expecte
d

23

Input analysis to HabEx and 9
LUVOIR Studies by Chris Stark

Large margins against scientific & technical uncertainties prevent costly late

[ ]
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How Do Complex Things Get Done On Time?

Define your scope earlier. Consider previous
Build in robust margins. investments and
landscape

opportunities

Design as a complex
system.
Plan long-term.

Know that you can build it
before you start.

12
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How Do Complex Things Get Done On Time?

Consider previous
investments and
landscape
opportunities

13

Prior work and
lessons learned
* Maximize use of

-

highTRL, ="y
architectures (i.e., . .
Hubble, Roman, .
JWST).» ™. ¥
Surveyand

leverage industry
landscape . .
opport_unities; '

(i.e., launch ,
vehicles, robotic .

servicing, Al/ML)



Consider Previous Investments and Landscape Opportunities | 14

National Aeronautics and Space Administration @/

L U \Y O I R

National Aeronautics and Space Administration

FINAL R EP G

HbEx

Habitable Exoplanet Observatory

Exploring New Worlds,
Understanding Our Universe

}
www.nasa.gov -




Consider Previous Investments and Landscape Opportunities

Potentially greater mass & volume

" i e

capacity enables ...
* More conventional materials
* Modular design to ease I&T

* Innovative design trades (e.g., launch

deployed mirror)

Analyze alternative materials & designs to reduce system complexity

15

. .
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Consider Previous Investments and Landscape Opportunities L

el

o

12022/05fingelsatvi-mm“mép) <"
n;/’ / /m‘(!e sfatw’mrv.me‘pr‘

A Mission Robotic Vehicle servicing an on-orbit satellite. i g |

Credit: SpacelLogistics/Northrop Grumman L = te %ﬂ
Hubble servicing of instruments has kept Frequent, inexpensive launches & new . %
it at the forefront of science for over in-space services enable planned - g3t
three decades servicing 3

Analyze alternative implementation strategies to reduce schedule & risks



How Do Complex Things Get Done On Time?

Define your scope earlier.
Build in robust margins.

Consider previous
investments and

1.:_.:%‘:‘ °

Design as a complex

system.

Plan long-term.

landscape
opportunities

Know that you can build it
before you start.

s . 4
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How Do Complex Things Get Done On Time?

Know that you can build it
before you start.

18

Many ParaHej Act|V|t|es

* Leverage past ™. -
technology * '
investments |

* Develop technblog\es
earlier -

e |dentify testbed &
pathfinder needs

* 'Demonstrate scjence
performance of -
critical subsystems .

« Develop modeling
capabiljty & fidelity .
ngeo!s t_hrougho'ut *
mission phases -

A
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Technology Readiness Level Definition .

©
<
o
- ! &I
- a 8
TRLS NPT
*Actual system completed and “flight qualified” through test and _ e’ - " . . 2|
demonstration {ground or space) e SR \' b . %>5
: . .o .. Tg
TRL7 : Y " "y S
| o v
*System prototype demonstration in a space environment \ \% '.
: 9
TRL6 . ' 2’
-' . NS
*System/subsystem model or prototype demonstration in a relevant ' ) i
environment (ground or space)
TRL5 " \
*Component and/or breadboard validation in relevant environment
TRL4 g -

*Component and/or breadboard validation in laboratory environment

RL2
R “ K

.
-

TRL2

.gov/directofa_tes/ heo/sca n},engineerih’g‘te

asa
& =

»
w.n

TRL1
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Know that you can build it before you start. 20

-

NASA’s decades-long investments in developing large space telescopes pay off with a_v\_/é_- P

inspiring science results

A Nancy Grace Roman Space Telescope -
UV-Vis-NIR Flagship Scalable Observatory High-Contrast Imaging v 1

Hubble Space Telescope

Serviceability L2 Operations Vis-NIR Detectors )

Focus on new challenges, not inventing new ways to do things we know how tg



Know that you can build it before you start. 21

Relative Costs

Cost of 3

’ » \ . N 4 -\
Mission cost aggressive early L W
with TRL 4-6 .. -

technologies tech dev R \
at KDP-A T :
;. N
Mission cost ; ‘

_ _ with TRL 6 . '

Cost of flagship assuming technologies
t KDP-A -
standard tech g . | ¢
developmen Cost of flagship assuming ol B

early tech dev

Focus early investment on the mission-enabling technologies

and understand the trades between science, cost, and risk 2



Know that you can build it before you start. B, :

Strategically use pathfinders, testbeds, Engineering Test
Units, and validation tools such as integrated modeling to:

Inform designs and their realism
Inform and validate models

Inform / practice testing processes and procedures

-l A

Define ground test facility and GSE requirements

Pathfinders allow teams to practice with non-flight hardware off the critical path. Use
pathfinders & testbeds to inform and validate realism of models



Know that you can build it before you start. 23

* As with many missions, the flight environment will be impossible to completely replicaté on -
the ground S

HEE N *- .
* Verification by analysis with models that have been validated via tests will be used to show . -

compliance with performance requirements -

* Integrated modeling was used on Chandra and JWST with limited number of it_er'atiqns.of' e
trade space optimization

N
Joint development Sub-assembly ISIM structure

Detailed material ot development tests WerificationT
characterization ests .




Know that you can build it before you start. 24

* As with many missions, the flight environment will be impossible to completely replicaté on -
the ground Sk

g )
*

.
»

 Verification by analysis with models that have been validated via tests will be used to shc')wl; A_
compliance with performance requirements

Q; \’
* .‘

* Integrated modeling was used on Chandra and JWST with limited number of it_er'atiqns.of'
trade space optimization

-

. Sub-assembly ISIM structu?é,

- : Joint development | 3
Detailed material tost P development tests -verification
characterization €sts )

Establish an interoperable, integrated modeling framework to enable global

partner communication, work coordination, and multi-discipline assessments of the full

design trade space



How Do Complex Things Get Done On Time?

Define your scope earlier.
Build in robust margins.

Consider previous
investments and

1.:_.:%‘:‘ °

Design as a complex

system.

Plan long-term.

landscape
opportunities

Know that you can build it
before you start.

s . 4

. .



How Do Complex Things Get Done On Time? 2

P

Design as a System
Use modular design
Standardize
interfaces

Build in robust
margins

Develop long-lead
roadmaps and |
INC{E I N e (V][R Design as a complex - \ s

to achieve them system. g
Plan long-term. e

. .

26 #



Mission Concept Maturity Level Definition

CONCEPT
MATURITY
LEVELS (CML]

“Pre-Pre-Phase A” Pre-Phase A Prelimina

Cocktail Initial Trade Point Baseline Integrated Implementation Project
Napkin Feasibility Space Design Concept Concept Baseline Baseline

2 3 &8 AT

ASSIGNED CONCEPT DEVELOPMENT
PROJECTS

https://exoplanets.nasa.gov/internal_resources/2232 Session-2_1_Linking_Science_and_Mission_Architecture-John Ziemer.pdf




Plan out entire mission development lifecycle holistically 28

Strategy .
Integrated Phase A Wl ey %fj
. . § - I
e Large missions are inherently complex. “Humans are & . -y
£ Qe :
. : o
bad at accurately assessing complexity” — NASA SMD & - ?530 :
J ‘ L
.. £ g
Large Mission Study (2020) £ \ 5
v Cocktail ' 3.
(V)] : N
* Impact of complexity on technology transition, %

manufacturing, integration & test, and operations

often requires lifecycle systems engineering approach

rces/2232_Session

(System of systems)

ntributors . .
ementation

Credit: NASA/JPL: John Ziemer -

Im%i

GOMAP will assess progress on all aspects of the mission concept

using the Mission Concept Maturity Level system

.



Manage complexity with a modular design 2

Designing your mission to be modular enables:
* Less complex I&T
* Ease of access to systems and subsystems during I&T

Instrument 3 & 4

* Ease of transportation considerations

* Less complex servicing

Designing the mission architecture to be modular pays off in spades reducing risk to flight
hardware and minimizing risk of schedule erosion



Manage complexity with parallel operations 30

Primary Mirror Lead Engineer

Lightweight ULE mirror segment
A = | i

Assembly Assembly Assembly Assemblys -
Line 1 Line 2 Line 3 MaX " *

v
\

Credit: L3/Harris

More parallel operations lead to a more efficient schedule

e.g. Parallel integration of N nearly identical primary mirror
segment assemblies

|

Schedule modeling can help determine the optimal number of parallel vs. serial
operations for fabrication, coating, or integration procedures.



Define your scope earlier.
Build in robust margins.

1.:_.:%‘:‘ °

How Do Complex Things Get Done On Time?

Design as a complex

system.

Plan long-term.

Consider previous
investments and

landscape
opportunities

Focus on new technologies &
develop them earlier

31
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Near-Term HWO

Goal:
* Efficient project ready for funding

Objectives:

* Ready for formal Pre-Phase A

* Concept Maturity Level 3 Technologies at
TRL4

* Science goals & objectives explored

Roadmaps for:

* Concept Maturity Level 5
 Technology Readiness Level > 6

* Science Traceability Matrix Definition

HWO By Astro2030 ' 32

Goal: o g
* Successful independent assessment :
Objectives:

* Ready for mission formulation
* Concept Maturity Level 5 . &N
 Technologies > TRL 5 |

« Science Traceability Matrix finalized

-

Roadmaps for: ~ .
e Concept Maturity Level 8
 Technology Readiness Level > 6



Near-Term FGOs 2,3

Goal:

* Continue advancing science/technology
development via opportunities (probes,
Explorers, suborbital missions,
technologies)

Objectives:
 Technologies development
* Precursor science

FGOs 2,3 By Astro2030

Goal:

KX

* Prepare and be ready for prlorltlzatlon at

Astro2030 ' .\ T

Roadmaps for:

« Concept Maturity Level 5 - Y

 Technologies > TRL 6 | |
« Science Traceability Matrix definition

Range of opportunities to mature suencgg
and technologies:

* Probes

* Explorers

* Suborbital missions

* Technology development

o



Before HWO Project

HWO
Science, Technology, Architecture

Review Team (START)
* Develop left 2 columns of Science
Traceability Matrix (STM)
* Explore trade space in context of
current landscape opportunities

Precursor science proposals
SAT Competed Technology Calls
Technology Roadmapping via
Astrophysics Program Offices

FGO-2, FGO-3:
Precursor science proposals
SAT Competed Technology Calls

With HWO Project | 4

HWO g
Projectized Pre-Phase A and Phase A—
managed by NASA HQ Astrophysms -
Strategic Mission Program (ASMP)

Pre-2030 Decadal: FGO-2, FGO-3" *
Technology Roadmapping * R
Precursor science proposals o
SAT Competed Technology Calls ‘
Pre-Astro2030 Study Team



Near-term HWO technology development 3

NASA ROSES solicitation: System-Level Segmented Telescope Design

e 4

HWO Technology
Development through NASA e e T ol
ROSES Solicitation \

74 Y L3HARRIS™ () )q > & L3HARRIS®
V&, —ll " FAST. FORWARD. SR E ' /

NORTHROP— ... 1T, 4/1

GRUMMAN ; e LOCKHEED MARTIN - |
._ ?_ :'. i, —

KR@TOS |SRE UF &PSSL " iE ey
Ultra-Stable Large Telescope Research and Technology Maturation for Astrophysics
Analysis — Technology Maturation (ULTRA-TM) Space Telescopes (TechMAST)

y O

https://science.nasa.gov/researchers/sara/grant-solicitations/roses-2017/amendment-50-release-d15-system-level-segmented-telescope-design .



Near-term HWO technology roadmapping 3%
NASA Astrophysics Program Offices Facilitating HWO Roadmapping :

HWO Technology

/ Roadmapping -\ Bk,

Ultrastable Observatory
Lead: Lee Feinberg (GSFC)
Tech Coordinator: Laura Coyle (Ball)

P

Coronagraphs
Co-Lead: Pin Chen (ExEP/JPL)
Co-Lead: Laurent Pueyo/(STScl)

-

Subteams:
Observatory/System/ACS
Sensing and Control
Mirrors/Thermal/Coatings
Backplane/Structure/Deployment

Subteams:
Deformable Mirrors
Coronagraph Design Options
Segmented Telescope Sims
Workshop Planning)

Verification/Facilities/Demos - N
Facilitated by the Physics of the Cosmos (PhysCOS) & Facilitated by the Exoplanet and Exploration® >*
Cosmic Origins (COR) Astrophysics Program Office (EXEP) Astrophysics Program Office "

36{



GOMAP/HWO Groups — How To Get Involved

Science

* Pre-Cursor Science (ROSES call)

* Science, Technology, Architecture Review Team (START)
(Dear Colleague Letter)

* Extreme Precision Radial Velocity (EPRV) (ROSES)

Technology
* Technology Development: (SAT, APRA, ROSES, Directed, etc.)

* Technology Roadmapping (Facilitated by the Astrophysics Program :

Offices)
* Interoperable Integrated Modeling

¥ .

37



APAC GOMAP Findings and Responses

Recommendation (GOMAP) Response

The APAC advises that APD not only support cross-PAG SAGs and SIGs as community interfaces to the Not Accepted.
GOMAP process, but to explore the efficacy of establishing formal GOMAP structures operated by the See Mark Clampin's presentation
Division for all three Great Observatories simultaneously.

The APAC advises APD to consider formal stewardship of early GOMAP Integration/Strategy teams for the | Not Accepted.
X-ray and FIR concept missions envisaged withing the Astronomy and Astrophysics 2020 Decadal Survey See Mark Clampin's presentation
that can interface with community-led initiatives such as SAGs and SIGs.

The APAC requests at its next meeting a thorough discussion by APD leadership of a Great See Mark Clampin and Julie
Observatory Mission and Technology Maturation Program (GOMAP) implementation roadmap Crooke’s presentation on Day 1
commensurate with the prioritization of this activity over the next decade dictated within the 2020
Decadal Survey recommendations.

The APAC advises APD to understand whether the demands on the telecom infrastructure and the data See Mark Clampin's
downlink bandwidth environment and access is sufficiently robust for Webb alongside simultaneous presentation on Day 1 of this
operations of pending missions such as Euclid and Roman, and those envisioned in the GOMAP vision, in | meeting

concert with the broader portfolio of mission operations conducted by NASA.







How Do Complex Things Get Done On Time? | “

* A successful flagship starts long-term work before staffing ramps up, and details gét

refined as the trade space continually gets more focused.

Start with Decadal science

Quantify all science objectives
including their break points & slope of
performance degradation

|dentify observatory/instrument
capability needs

ENEGENERA G

Use modular design

Standardize interfaces

Build in robust margins

Develop long-lead roadmaps and
Integrated Schedule to achieve them

/
-

Maximize use of high TRL e
architectures '
Survey and leverage mdustry - X ‘
landscape opportunities (i.e., launch
vehicles, robotic servicing, Al/ML)

-

Develop technologies early -
Identify pathfinder needs =~ =
Develop modeling capability & fidelity .
needs throughout mission' phases
Demonstrate science performance of |
critical subsystems

)
N

40 ~



What does inscribed diameter mean? | ¢

LUVOIR-B Circumscribed diameter, &

-

*~

Monolithic telescope (unobscured)
Segmented telescope (unobscured)
Segmented telescope (obscured) - - - -

*y

2]
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Effective number of Habitable Zones surveyed

5 10 15
Inscribed diameter (meters)

FIGURE 7.6 Potentially habitable exoplanet yield vs telescope diameter for different telescope architectures. Right
axis shows the number of habitable zones surveyed (weighted by completeness); left axis shows the expected
number of planets discovered assuming the occurrence rate of rocky planets in the optimistic habitable zones of
different stars, eta_earth=0.24 (Bryson et al. 2021). The red dot shows the expected yield for the target 6-m
inscribed diameter. NOTE: Habitable zone is defined as 0.95-1.67 AU for planets of 0.8-1.4 Earth radii. SOURCE:
Adapted from C. Stark (Space Telescope Science Institute), D. Mawet (California Institute of Technology), and B.
Macintosh (Stanford University).




Pre-Phase A

A successful flagship starts long-term work before staffing ramps up...

Science
Requirements

Mission
Architecture
Decadal

Science

Objectives .
Technology

Mission
~ Design

* Science definition
* Architecture & concept development
* Technology development

* Facility development planning

Verification & validation planning

Pathfinder/engineering demonstration planning
Servicing approach & partnership

Partner interface development

. 4

42
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Pre-Phase A | .

A successful flagship starts long-term work before staffing ramps up...

s o 4

Establishing this work in Pre-Phase A isn’t the same as shifting Phase A early

This critical step between the Mission Concept Study and Phase A involves government,
science community, industry, and other partners to coordinate efforts, refine the flagship’s
definition, and prescribe how to proceed in Phase A
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