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This document provides an overview of the inaugural 
NASA SMD AI workshop in May 2021. 

We encourage interested readers to explore the 
memos herein in detail and look forward to the rich 
discussions that will undoubtedly follow.  
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PART 1
THE WORKSHOP & 
OPPORTUNITIES

“Deep Learning excels at unlocking the creation of 
impressive early demos of new applications using very little 
development resources. 

The part where it struggles is reaching the level of consistent 
usefulness and reliability required by production usage.” 

“In general, there is very little research done on best 
practices for data curation / cleaning / annotation, even 
though these steps have far more impact on applications 
than incremental architecture improvements.

Preparing the data is an exercise left to the reader.” 

 
François Chollet 
Google Brain 
Creator of Keras 
Author of ‘Deep Learning with Python’
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This is the final report of a workshop carried out by the NASA Science 
Mission Directorate (SMD) Strategic Data Management Working 
Group (SDMWG) Artificial Intelligence (AI) team from May 12-14, 
2021.  The workshop was a direct response to the SDMWG Strategy 
for Data Management and Computing for Ground-breaking Science 
2019-2024 recommendations.  

The purpose of the workshop was to bring together NASA science 
community, academic partners, and industry experts to discuss ways to 
accelerate the adoption of AI across NASA science divisions and foster 
cross-disciplinary science enabled by AI utilizing large science data 
archives and computing platforms.  This report is a summary of the three-
day workshop, which consisted of keynote addresses, panel sessions, 
and breakout sessions that discussed various focus areas addressing the 
purpose of the workshop. This report has been reviewed by individuals 
with diverse perspectives and technical expertise.

In preparing the report, the aim has been to reflect the spirit of the 
discussions in a form from which participants and the stakeholders may 
gain insights and use the inputs to plan future activities. Some of the 
ideas discussed at the workshop have been further refined and additional 
background information added. 

The workshop’s success would not have been possible without the 
invaluable contributions by many speakers, panellists, moderators, and 
other participants who donated their time and expertise to inform these 
discussions. We wish to also extend a sincere thanks to each member 
of the NASA SMD SDMWG AI team for formulating the workshop, the 
Frontier Development Lab team for planning and hosting the workshop, 
and the reviewers and editors for assistance in developing the report. 

The SDMWG will use this report to guide future SMD AI activities. 

While we implement the AI activities, we will continue to receive additional 
input from the community through activities such as meetings, workshops, 
and webinars.

FOREWORD

Manil Maskey
Lead, AI/ML Team, NASA SMD 
Strategic Data Management Working Group 
NASA HQ
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EXECUTIVE SUMMARY

NASA Science Mission Directorate (SMD) Strategic Data 
Management Working Group (SDMWG) Artificial Intelligence (AI) 
team collaborated with the Frontier Development Lab (FDL) to host 
a virtual SMD AI workshop from May 12-14, 2021. The goals of the 
workshop were to explore ways to transform science data into AI-
ready data, examine opportunities to utilize computational platforms 
for AI, foster applications of AI across multiple science domains, and 
develop next steps to realize the opportunities.

The three-day virtual workshop hosted a diverse group of researchers, AI 
practitioners, and stakeholders from academia, industry, government, and 
non-profit organizations.

The workshop was organized around nine focus areas: 

1. standards for AI readiness;
2. data sparsity and heterogeneity;
3. uncertainty and bias;
4. reproducibility;
5. cataloging and sharing AI-ready data and models;
6. computational platforms;
7. cross divisional projects;
8. adapting tools and methods across domains; and
9. practitioners’ checklist and AI ethics.

This final workshop report is based on expert opinion and 
information provided by the participants and curated by the focus 
area leads and the organizing committee. 
  

SYNOPSIS OF WORKSHOP

The workshop identified common themes and limitations in the adoption 
of AI along with opportunities to accelerate its usage. These include 
increasing the trustworthiness and reproducibility of AI data and 
models, preparing AI-ready data and sharing training data and models, 
increasing the access to computing resources, and fostering an inclusive, 
collaborative community through training and engagement that are able to 
practice cutting edge ethical AI for science.

Increasing the trustworthiness of AI models and data is a critical step to 
increasing the usage and adoption in different communities.  During the 
meeting, experts discussed several areas to improve the trustworthiness 
of AI models.  These include: 

• development of best practices for overcoming sparse data that 
can cause overfitting of models; 

• consideration of methods to measure appropriateness and the 
impact of the techniques used to overcome data sparsity or 
heterogeneity issues. 
 

• review of uncertainty and bias at the SMD proposal stage and 
peer reviewed to increase the trust in AI training datasets and 
models; and  

• inclusion of uncertainty quantification and known bias in science 
results.

Reproducibility of AI experiments is difficult and methods to incentivizing 
reproducibility of science results based on AI need to be investigated to 
foster a culture of open reproducible science. Activities to help incentivize 
reproducibility include reproducibility challenges, identifying and 
documenting best practices and processes to address versioning and 
maintenance of AI-ready data and models, and open-source access to AI 
software, training data, and models.

EXECUTIVE 
SUMMARY AND 
SYNOPSIS OF 
WORKSHOP
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With its long history of openly sharing data and funding large science 
teams, NASA SMD has an opportunity to enable greater sharing of AI-
ready data and models. AI-ready datasets significantly lower the barrier 
to entry to using AI for science and allow for easier reproducibility of the 
results.  The following activities can help to increase the sharing of AI-
ready data and models:

• development of subject matter expert (SME) informed AI-ready 
dataset standards to ensure that datasets and models are 
prepared consistently and ethically; 

• development of reusable AI-relevant data management tools; 
and 

• development and publication of labelled training data and trained 
models for AI applications and benchmarking.

Access to computing resources is often a limitation to the adoption of 
AI for science. NASA SMD should lower the barriers to entry to access 
computing resources for AI to maximize its investment in high end 
computing capability (HECC). Additionally partnerships with commercial 
cloud providers could expand the availability of computing to users 
without NASA credentials.  NASA should also expand current HECC to 
advance AI by fostering a collaborative hybrid open science environment 
where NASA and non-NASA researchers can work together.

AI techniques can be applied across different domains for analysis 
and knowledge discovery from large data archives. NASA SMD has an 
opportunity to accelerate the adoption and usage of AI across science 
disciplines through:

• supporting cross domain collaboration and sharing of code, 
workflows, and best practices; 

• training and education on possibilities of AI, skill development, 
and adaptation of existing models for different domains; and 

• fostering an inclusive and collaborative culture in both data 
management and AI implementation within and across SMD 
programs.

The expert group identified that NASA science needs practical guidance 
for ethically applying AI. The group encouraged NASA SMD to apply 
existing responsible research practices, develop a checklist for best 
practices, conduct ethics review of research, develop systems to examine 
unintended consequences of AI research, and include additional ethics 
experts into NASA discussions.

The level of enthusiasm and engagement of participants from all of NASA’s 
science divisions and external partners indicates the importance of 
addressing the challenges identified to accelerate adoption of AI for NASA 
science. Identified opportunities to address these challenges include :

• increase investments in interdisciplinary and collaborative 
AI projects using cross divisional competitive solicitations; 

• invest in the generation and sharing of AI-ready data and 
models; 

• incentivize reproducibility and open sourcing of AI artifacts; 

• consider optimal and more open use of HECC and cloud 
computing for AI; 

• develop best practices and guidelines for trustworthy AI for 
science; 

• embed ethical considerations of AI into the science 
research process; and 

• establish an AI center of excellence to provide leadership, 
planning, guidance, communication, and implementation of 
initiatives to accelerate AI across the SMD.

SYNOPSIS OF WORKSHOP SYNOPSIS OF WORKSHOP
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AI FOR EARTH AND SPACE SCIENCE

Artificial intelligence amplifies and extends our reach as scientists—
expanding capabilities and creating new efficiencies. It’s emerging 
at the same time as a rapid scaling in our data gathering capabilities, 
allowing us to observe our planet, star, and sky from multiple vantage 
points. Enormous quantities of streaming data can now be used to unveil 
dynamic, real-time insights in a way we have never been able to before.

In parallel, AI is changing how we think about the outputs of science, 
shining a forensic eye on the limitations of journal publication, how data is 
shared, and how results are reproduced. Its trans-discipline, iterative, and 
data hungry nature is also challenging classical definitions of how science 
is done. In AI, the journey starts with the data and the hypothesis often 
comes later.

Over the last few years, we have also seen excellent examples of the ability 
of neural networks to predict and simulate physical phenomena, from fluid 
mechanics, the wave equation, particle behavior, and climate dynamics. 
AI pipelines can now be developed which integrate prior scientific 
knowledge into workflows, both improving the accuracy of predictions, 
but also allowing results outside their initial training distribution. Once 
trained, physics-informed neural nets (PINNs) can predict phenomena 
with greater efficiency and confidence —a tantalizing new capability for 
applied science.  

A DATASCOPE

In the same way that the telescope and microscope gave us the laws 
of gravitation and germ theory, the ability of AI to act as a ‘datascope’ 
promises an exciting new chapter of discovery. It is therefore worth 
emphasizing that this new chapter is different to the ‘code and ship’ 
mindset of the last generation of computing. In the same way that reliable 
air traffic control enabled jet travel, or allocation of radio spectrum 
facilitated the universal connectivity we now take for granted, there 
remains a substrate of challenges to AI adoption which require a new 
mindset at the ecosystem level, with data management at its very heart. 

AN AI-READY MINDSET

Like humans, machines that learn are often fallible. AIs need to be taught 
and the data inputs constantly maintained before they can be trusted. 
This mindset is useful. It’s important to frame AI as endlessly self-learning 
systems, where humans are very much in the loop. 

As our learning machines get more capable, so must our human systems 
that maintain them. In other words, to successfully grow and benefit from 
this next chapter of AI, we need to establish management systems that 
work in harmony with AI and data, in a cycle of continuous improvement. 

The broad outlines of these ecosystem level requirements are already 
well understood by NASA’s SMD: AI-ready data, reproducibility, bias 
and uncertainty, and AI ethics, to name a few. Examining these core 
components became the goal of the inaugural AI SMD workshop in May 
2021, to dive deeper into each component’s aspects, understand the 
central and interconnected tensions, and surface opportunities. 

The outcomes are captured in detail in the technical memos that follow. 
We’d like to thank everyone who lent their time, passion, and wisdom to 
these fascinating papers and invite readers to contribute to the discussion 
as our understanding evolves. 

INTRODUCTION

James Parr, 
Director 
Frontier Development Lab, 
September 2021
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In this report for the purposes of brevity, we 
are using the term artificial intelligence (AI) 
as a catch-all for machine learning / deep 
learning,  artificial neural networks (ANNs), and 
traditional data science.
 

A non-exhaustive overview of the AI toolbox can be viewed here:
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WORKSHOP
OVERVIEW

Supporting NASA Science Mission Directorate research teams to 
build trusted and reproducible artificial intelligence/machine learning 
(AI/ML) pipelines for science will require a universal understanding of 
AI best practice to be shared across the community. 

During May 12-14, 2021, NASA SMD Strategic Data Management 
Working Group (SDMWG) organized a workshop that brought together 
over 100  AI/ML experts from academia, government, and industry. 
The participants discussed nine focus areas on how to best utilize and 
advance AI/ML techniques for NASA science. This report captures 
individual memos from the nine focus area discussions that contain 
opportunities, challenges, and next steps for exploiting AI/ML using NASA 
science data and computational capabilities. The diverse community’s 
experience with AI/ML, high performance computing (HPC), data 
systems, data curation and management, and policy development 
revealed a rapidly growing set of unique opportunities for groundbreaking 
science, novel discoveries, interdisciplinary applications, and stronger 
collaborations.

The nine focus areas discussed are shown in the diagram below. 
A technical memo was produced for each focus area, and the high 
level implications aggregated into the executive summary.

DAY01
SCIENCE DATA: 
OPEN, AI-READY, 
AND ETHICAL USE

DAY02
TOOLS, SERVICES, 
WORKFLOWS, AND 
PLATFORMS TO 
CATALOG AND SHARE 
ML DATA AND MODELS

DAY03
APPLIED AI
ACROSS DIVISIONS

DAY01
FOCUS AREA 01
STANDARDS 
FOR AI 
READINESS

DAY02
FOCUS AREA 04
REPRODUCI-
BILITY

DAY03
FOCUS AREA 07
CROSS 
DIVISIONAL 
PROJECTS

DAY01
FOCUS AREA 02
DATA SPARSITY  
AND  
HETEROGENEITY

DAY02
FOCUS AREA 05
CATALOGING 
AND SHARING 
AI READY DATA 
AND MODELS

DAY03
FOCUS AREA 08
ADAPTING 
TOOLS AND 
METHODS 
ACROSS 
DOMAINS

DAY01
FOCUS AREA 03
UNCERTAINTY
AND BIAS

DAY02
FOCUS AREA 06
COMPUTATIONAL 
PLATFORMS

DAY03
FOCUS AREA 09
PRACTITIONERS 
CHECKLIST AND 
AI ETHICS
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TRACEABILITY MATRIX
SMD AI WORKSHOP: GOALS AND TRACEABILITY 
Specific outcomes: while the case for AI and science is now well established within the scientific community, there is much opportunity to 
optimize. The following traceability matrix captures the key areas of emphasis and breakout session goals

DAY01
STANDARDS 
FOR AI 
READINESS

DAY01
DATA SPARSI-
TY AND HET-
EROGENEITY

DAY01
UNCERTAINTY 
AND BIAS

DAY02
REPRODUCI-
BILITY

A. Scientific guidelines for 
generating high quality AI-
ready (training) data

B. Identification of 
gaps in AI-ready data, 
computational capabilities, 
and models within SMD

C. Guidelines to catalog 
and share AI-ready data 
and models across SMD

D. Identification of best 
tools and framework to 
implement AI within cloud 
and HEC

E. Guidelines for 
reproducing NASA AI 
research results

F. Guidelines/best 
practices/checklist 
for cross-divisional AI 

DAY02
CATALOGING 
AND SHARING 
AI-READY DATA 
AND MODELS

DAY02
COMPUTA-
TIONAL 
PLATFORMS

DAY03
CROSS 
DIVISIONAL 
PROJECTS

DAY03
ADAPTING 
TOOLS AND 
METHODS 
ACROSS 
DOMAINS

DAY03
PRACTITIONERS 
CHECKLIST AND 
AI ETHICS
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PART 2
TECHNICAL 
MEMOS
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FOCUS AREA 1

STANDARDS FOR 
AI READINESS
Exactly what do different divisions mean by AI ready and what are the 
guidelines for creating AI-ready data?

KEY CONCEPTS
AI readiness is the process in which raw data is converted into a dataset that 
can be ingested by a machine learning (ML) workflow. This process involves 
calibration, (such as the correction of an offset introduced by a measuring 
instrument), interpolation, framework adaptation, and other preprocessing 
steps. Additionally, AI readiness could involve ensuring some global 
properties of the dataset, such as uniformity across the dataset or statistical 
properties (e.g. presence of outliers or population imbalance). 

WHY DOES IT MATTER? 
AI-ready datasets allow for easier reproducibility (defined as the ability to 
reproduce an ML workflow to reach the same conclusions as the original 
work) of the results and help researchers and scientists create benchmarks 
for new ML models. However, there are no generalized guidelines for this 
process. The consequence: large amounts of duplicated implementations of 
code, hidden costs, and unvalidated scientific research (to name a few).

IMPLICATIONS
Should NASA SMD align efforts to develop a novel method to standardize 
the process of AI readiness? 

Currently, a significant amount of time and resources of any ML project are 
invested in data labeling and preparation for ML applications. Standardization 
of the AI readiness of the dataset could help reduce the duplication of 
datasets in different divisions, avoid custom pre-processing, and therefore 
reduce the time employed in obtaining an AI-ready dataset. We can envision 
an automated and reproducible data prepossessing pipeline that could 
convert raw data into ML-ready data based on different specifications. Also, 
we should discuss the standardization of data augmentation, uniformization, 
and ways to smoothly tie the datasets to the labeling process. 

WHAT CONTRIBUTORS SAY

“When we are trying to set up, say sensor classification with some 
of the Mars imaging data, there are things that we might need 

to go back and expand the metadata requirements that we had 
to add-on. Often there is a lot of cleanup to really make the data 

usable and searchable and analyzable, in that way, there are 
considerations that could have been brought in sooner.” 

“We have a lot of image data, returned by the Stardust mission, 
we’re trying to recognize the tracks of interstellar dust particles, 

which we have had humans doing previously. Now we want to use 
machine learning to recognize these tracks. Our main challenge 

is not the data, the data is ready. It’s the training and generating a 
training set that works effectively”

“There is a major upfront investment to get going.”
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TECHNICAL MEMORANDUM: FOCUS AREA 1
STANDARDS FOR 

AI READINESS

Authors: Lauren M. Sanders1, Sylvain V. Costes1 

1Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 
94035, USA

INTRODUCTION

As artificial intelligence (AI) and machine learning (ML) implementation picks up 
speed across NASA domains including the Science Mission Directorate (SMD), 
the need has grown for standardized guidelines surrounding AI readiness.  

AI readiness encompasses many data preprocessing, curation and labeling 
steps between the generation of raw data and the implementation of AI methods. 
Standards for AI readiness become particularly important in light of recent 
findings by the NASA Advisory Council’s Ad-Hoc Big Data Task Force that at 
least half of all scientific papers report results using archived rather than newly 
generated data[1]. SMD alone is projected to create over 100 petabytes of data 
per year, much of which is made widely available long-term to NASA and external 
researchers for analysis and modeling[2]. 

However, as Barbara Thompson noted in the focus area 1 main meeting, 
AI readiness is more than data processing and preparation. A process of AI 
readiness involves designing future missions and experiments with the intent 
to generate machine-interpretable, AI-relevant, useful, and ready data. This 
process will be aided by leveraging existing data standards such as the FAIR 
data principles for open science (findability, accessibility, interoperability, and 
reusability)[3], as noted by Sylvain Costes, focus area host. Moreover, SMD 
focus on interdisciplinary scientific discovery will necessitate the development 
of AI-readiness guidelines to allow for integration of datasets across scientific 
boundaries.

Here we summarize the topic identified from the 2021 NASA SMD AI Workshop 
on the current challenges, opportunities, and suggestions for developing SMD 
standards for AI readiness.
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DIGGING DEEPER

Overview
The SMD Strategy for Data Management and Computing for Groundbreaking 
Science 2019-2024 recommended SMD investment in incentives and education 
for AI/ML use for scientific discovery[2]. The same report noted that NASA’s focus 
has traditionally been mission-oriented rather than strategically facilitating the 
use of cutting-edge applications. Thus, to ensure that machine learning data are 
prepared and analyzed consistently, ethically, and according to best practices, 
there is a need for a hierarchical, iterative, domain-sensitive set of standards and 
guidelines for AI-ready data generation within SMD.  

Leveraging Diverse Data Types
AI-readiness guidelines must encompass the diverse types of data generated 
by the five science divisions within SMD. For example, wind measurement data 
from climate scientists within the Planetary Science division may be so large 
that the datasets must be subset prior to applying AI/ML methods. Subsetting 
guidelines must be designed in a statistically robust way so as not to introduce 
unnecessary bias into the downstream analysis. However, scientists working 
with biological datasets from the ISS face the opposite problem. Due to time and 
space constraints on the ISS, the sample numbers for space flown biological 
experiments are necessarily very small. Merging datasets together prior to AI/
ML analysis increases statistical power but can introduce technical bias or batch 
effect. To address this, SMD AI-readiness standards could provide guidelines for 
overcoming the statistical limitations of diverse data types.

Even within a specific domain, similar datasets may have been generated from 
different platforms or using different parameters. For example, datasets from 
different types of X-ray space-based telescopes generate spectra with different 
properties, while gene expression datasets generated with different sequencing 
parameters display global shifts in gene abundance composition. Combining 
or comparing such datasets requires robust interconversion measures, without 
risking data degradation by imposing stringent data formatting requirements. 
Consultation with a subject matter expert (SME) is often required for appropriate 
data management, but the development of standardized ontologies by SMEs 
has in some cases alleviated this requirement. For example, different resources 
can have different versions of chemical names for the same compound, making 
it difficult to synthesize chemical datasets. SMD AI-readiness guidelines could 
include efforts to develop SME-approved standardized ontologies across 
domains to facilitate broad usage of diverse datasets in AI/ML applications. 

In the development of metadata standardization and ontologies, SMD may benefit 
from the application of reinforcement learning algorithms to allow some datasets 
to label themselves based on small examples of labeling from SMEs. Similarly, 
natural language processing could be used as a tool to curate metadata in real-
time. Alternatively, some groups have had success soliciting citizen scientists 
to label datasets, with secondary SME review. In all cases, robust measures are 
necessary to mitigate reinforcing any bias present in the existing labels.

Data Sharing and Reuse
Because many AI methods greatly improve outcomes with more observations, 
reusing and converting previously generated datasets to AI readiness will take 
advantage of the abundance of data both within SMD and externally. However, 
a scientific culture of data sharing is important to ensure that existing datasets 
are fully leveraged. In many cases, this can be communicated top-down from 
leadership and motivated effectively through funding incentives. For example, 
NIH-funded researchers are required to submit a data management and sharing 
plan to make data accessible and reusable. Subsequently, costs associated with 
data management and sharing are often covered by NIH funding. When possible, 
similar incentives at the SMD or NASA level may help foster a culture of data 
sharing throughout our research institutions. 

Similarly, transparency and reproduction will be encouraged through appropriate 
incentives for storing and maintaining raw and processed data and generating 
detailed documentation on processing steps. This should include documentation 
on any domain-specific knowledge required for preprocessing, as well as 
contextual scientific information. Detailed documentation of the preprocessing 
steps is essential, as using preprocessed data without understanding can lead to 
bias and misuse in downstream results. It is important to note that even using raw 
data can lead to bias; for example, in the biological sciences, the available data 
may be limited and biased for technical or scientific reasons. 

Beyond incentives for data maintenance and sharing, initiatives for educating 
science experts on the potential power of their data may facilitate a culture of 
AI-ready awareness. In some cases, life scientists with no statistical background 
may be unaware that their experimental data could be reused for an AI/ML 
application. Education initiatives which demonstrate the value of their datasets in 
an AI/ML context could encourage compliance with AI-readiness standards.

Considerations and Implications
Standards for AI readiness may impact research feasibility and continuity in 
multiple ways. Awareness of these impacts while designing and implementing 
standards will help avoid negative downstream effects and noncompliance. 

Cutting-edge scientific data is often collected and formatted according to 
specific domain and data type constraints or economic considerations, rather 
than algorithmic input specifications. In some cases, imposing data standards 
may motivate removal of messy but valuable data. Care must be taken to ensure 
that standards for AI readiness do not become a lowest-common-denominator 
pressure that limits innovation and creativity. Engagement and involvement with 
each research community can help inform domain-specific constraints in this 
area. Further, buy-in from participants at all steps of data generation, processing, 
and maintenance is necessary to avoid blind rule following or even malicious 
compliance. 

Coercing data into an AI-ready format can involve several preprocessing and 
statistical normalization steps. Documentation of these steps is clearly important, 
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but it is also important to make accessible the quantification of statistical error 
or uncertainty introduced in the process. As data uncertainty impacts model 
uncertainty, making it available or calculable when relevant is essential for 
responsible and ethical AI. For example, it is not unusual for SMEs to disagree 
or simply have different syntax for ontology or data labels. In some settings, 
saving the disparate SME assignments as a type of metadata can be useful in 
downstream applications. Certain analysts may want to keep only data points 
with full SME labeling agreement or use the level of certainty as metadata in their 
analysis.

IMPLICATIONS 

An SMD AI-readiness framework should synthesize standards for newly 
generated AI-ready data, as well as harmonization guidelines for reusing existing 
datasets. Due to the varying degrees of AI readiness across experiments and 
datasets, designating an AI technology readiness level (TRL) could aid users in 
understanding the usability of a certain dataset for an application. A machine 
learning TRL framework has already been developed to rank technologies and 
could be used as a blueprint to design a similar framework for SMD scientific 
datasets[4]. An SMD AI-TRL platform could ask the user a few questions based 
on the needs of their application (e.g. “Are missing values acceptable?”) and 
based on the answers, could assign an AI-TRL value to all relevant datasets. 

With respect to newly generated data, SMD scientists will benefit from top-
down, basic AI-readiness standards for data and associated metadata. Due 
to the application specificity of many data preprocessing steps, it will likely be 
most useful to simply provide guidelines for making data generally usable for 
statistical analysis. More specific preprocessing steps can then be performed 
by the user. Similarly, rigid standards for all metadata may be counterproductive, 
but certain universal metadata could be required for a dataset to be considered 
AI-ready. For example, providing “time zero” and the time interval between data 
point collections would allow for comparison between experiments with different 
periodicity of collection. In some cases, it may be practical to implement these 
standards by simply updating existing data structure standards. Archives such as 
the Planetary Data System archive invest heavily in structuring data for long term 
preservation, and inclusion of AI-readiness guidelines would ensure that archived 
data are reusable for future AI applications. 

In order to make best use of existing datasets, the SMD AI-readiness framework 
could be accompanied by a harmonization layer platform that maps a 
dataset into a standard space. This solution works as long as the dataset has 
sufficient metadata. Therefore, particular attention must be paid to designing 
comprehensive and widely applicable ontologies across all relevant domains. 
These ontologies can then serve as structure for a harmonization platform. 
Importantly, multiple versions of such a harmonization platform already exist. 
AWS has a proprietary harmonization method, while various highly specific 

versions have been developed in academic groups (e.g. for image data[5], soil 
data[6], MRI data[7]). Rather than developing a novel method, SMD will likely 
benefit from evaluating and leveraging existing platforms from groups who have 
heavily invested in harmonization development. Leadership from SMD in this 
regard will generate buy-in across domains. 

Overall, the outcome of an SMD AI-readiness framework must be informative 
enough to ensure compliance and reliability, while flexible enough to allow 
scientific creativity and maintain utility across domains.

CONCLUSION

As NASA SMD encourages widespread training and adoption of AI methods, 
stakeholders at all levels will benefit from a set of global, SME-informed AI data 
readiness standards. Foundationally, these standards can spring from broad 
guidelines for creating statistically useful datasets, which will allow flexibility 
for the wide diversity of data types generated within SMD. Accompanying 
these standards can be a series of standardized metadata ontologies and a 
harmonization platform for existing datasets which currently do not conform to 
AI readiness. Assignment of a technology readiness level value for AI to relevant 
datasets based on user needs will facilitate data reuse, and a culture of data 
sharing and reuse will encourage maximal return-on-investment from past and 
future SMD-generated datasets. 
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FOCUS AREA 2

DATA SPARSITY AND 
HETEROGENEITY
How are concepts such as data sparsity, imbalance, robustness, and 
heterogeneity breaking forces for NASA’s SMD?

KEY CONCEPTS
Due to the broad spectrum of applications developed by the different divisions 
different issues arise when dealing with datasets. For example, medical data 
is usually sparse and Earth science data usually involves data fusion from 
different sources. This session will focus on the issues of sparsity and data 
heterogeneity. Data heterogeneity refers to data with great variability of types 
and formats. Heterogeneity occurs when a study requires data from different 
sensors or data is stored in different formats or coordinate systems. Sparsity 
refers to a lack of data in a certain dimension or paucity of a certain type of 
training data. 

WHY DOES IT MATTER? 
A large amount of time and effort are spent in harmonizing and unifying 
inconsistencies or synthesizing larger datasets from a sparse initial set 
(using autoencoders or GANS) so this issue could be viewed mainly as an 
economic problem. However, the current direction of AI-enabled research is 
moving towards leveraging data from multiple sources (e.g. different missions 
and historical data). Effective fusion of data is a powerful proposition for AI, 
improving the relevance of any obtained scientific results. In this context, 
managing data heterogeneity and sparsity becomes an eminent challenge 
and key amplifier of success. 

IMPLICATIONS
Could heterogeneity and sparsity issues be prevented by introducing a set 
of universal guidelines across missions? 

Solving the data heterogeneity problem would allow combining multi-domain 
and mission data and unlock the real power of data analytics. Standardizing 
the way effective homogeneity is achieved would reduce development time 
and allow for easier reproducibility of the results. 

WHAT CONTRIBUTORS SAY

“One researcher’s noise is another researcher’s data. I have 
worked with missions where they do pre-processing on the 
spacecraft and by the time it gets down, it’s conditioned and 
selected only for a particular type of research. I’ve run into 

situations where those who develop the onboard processing made 
it inconvenient for those to then use that data for other purposes. It 
would be wonderful if in future versions where there were liaisons 
to other fields of research that could at least provide some input 

into those who are developing that 
onboard processing.”

“Data fusion often requires significant subject matter expertise just 
to manage and harmonize inconsistent data types.”

“If you have a large mission, where the only source of data 
that you care about is from that mission, then you don’t have a 

heterogeneity problem. Within minutes, you cross those domain 
and mission boundaries and seek to combine any other data, you 

immediately have a heterogeneity problem and quite frankly, given 
how science research is going, that is the future, as we find that 
single mission science is no longer the best science we can do.”
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TECHNICAL MEMORANDUM: FOCUS AREA 2 
DATA SPARSITY AND HETEROGENEITY

Authors: Megan Ansdell, NASA Headquarters, Washington, DC
Hannah Kerner, University of Maryland, College Park, MD

INTRODUCTION

The topic of focus area 2 was data sparsity and data heterogeneity.  Data sparsity 
and heterogeneity are truly cross-divisional issues—many areas of science 
across SMD are faced with data sparsity and/or the need to harmonize data 
before usage with AI/ML models. For the purposes of the workshop, data sparsity 
refers to the paucity of useful data in a given dimension for a given problem. For 
example, there may be few-to-no labeled examples for land cover classification 
in Kenya resulting in a sparse dataset when pairing these labels with Earth 
observations, in comparison to other regions like the United States with more 
publicly available labeled datasets; data sparsity in land classification could also 
arise when Earth observations are affected by significant and persistent cloud 
cover, resulting in a sparse dataset for a given region. Data heterogeneity then 
refers to data with large variability in one or more aspects, for example in terms of 
data types and formats, which could occur when a given problem requires data 
from multiple sensors on different spacecraft.

The guest speaker, David Donoho, professor of statistics at Stanford University, 
aptly set the stage by asking participants to think deeply about what parts of 
the recent progress touted by industry, in particular AI scaling, are truly useful 
and applicable to science research. Often large, complex neural networks that 
produce the highest accuracy results, but at the cost of requiring huge amounts 
of labeled data and compute, are not necessarily needed to answer science 
questions or are infeasible to deploy in scientific contexts, for example on rovers 
at distant locations such as Mars or Europa. The focus area hosts, Megan Ansdell 
and Hannah Kerner, urged participants to focus on practical discussions in the 
breakout sessions, for example by sharing useful tools and methods that have 
worked for their own research and could help to solve common problems faced 
by scientists applying AI/ML to NASA research areas where sparse and/or 
heterogeneous datasets are common. The result was a rich collection of common 
problems, practical solutions, and ideas for the future.
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DIGGING DEEPER

Challenges of Data Sparsity in NASA Science
Data sparsity finds its way into many areas of NASA science research. For 
example, in Earth science, satellites orbiting our planet and monitoring its surface 
can be limited by persistent cloud cover that renders observations unusable 
for a given application and therefore can result in sparse datasets over certain 
parts of the world. Additionally, in-situ ground truth data is often important for 
interpreting Earth observation data but can be much sparser relative to the 
larger regions and/or more dense sampling obtained by the satellites, thereby 
requiring interpolations and other assumptions when combining the two. 
Identifying an appropriate near truth point on the ground in both space and time 
to a given satellite track is another dimension of data sparsity that requires a priori 
assumptions of where, when, and what is acceptable to sample as ground truth. 
These assumptions are not always obvious and can have significant implications 
for the ability of an AI/ML model to make accurate predictions. 

Spacecraft telemetry is another area that faces data sparsity issues and is 
common to all of the NASA SMD divisions, as they all use space-based assets 
such as satellites, rovers, and/or landers. Telemetry is gathered by various 
onboard sensors that return information on the health and state of the spacecraft, 
but these sensors can report at very different cadences. Some sensors will 
only report a value when there is a change, others report a value at a regular 
cadence, and some sensors are not always turned on or are prone to erroring 
out. This presents a data sparsity (and data heterogeneity) problem that requires 
detailed understanding of what each reported sensor value actually means, and 
therefore what assumptions can and should be made to fill in values to complete 
the dataset in a manner that makes it useful for AI/ML models. This highlights an 
important aspect when tackling data sparsity issues: when there is missing data, 
it is critical to understand why the data is missing. This will then enable you to 
build accurate assumptions for filling in that data and whether doing so is valid. In 
addition, the “missingness” of data can even be used to learn patterns useful for 
science; for example, the frequency and location of missing information due to 
clouds could be used to infer information about weather patterns in the region.

Solutions to Data Sparsity in NASA Science
One solution to data sparsity when applying AI/ML models to scientific research 
problems involves the incorporation of detailed scientific models that encapsulate 
our current understanding of the underlying physics of the phenomenon being 
studied. The approach is to create a suite of physical models and then use them 
as an input into the AI/ML model, which is then trained on the delta between 
the physical model and the data. This delta can have a much simpler structure 
to learn and is therefore capable of being learned by lower-order AI/ML models 
on sparse datasets. This approach of learning the delta over the physical model 
essentially removes the burden from the AI/ML model to learn a potentially 
complex set of physical laws that we already understand, which would otherwise 
require large AI/ML models and large input datasets to re-learn this in a data-
driven way.

However, there are caveats to the physical model approach. One is that this can 
limit real-time applications since running complex physical simulations for training 
AI/ML models on deltas requires significant time and compute investments, 
which may not be available in real-time, rapid-response situations such as natural 
disasters. A way around this is to train another AI/ML model to approximate the 
physical model; in this case, a large grid of the physical models just needs to be 
created once, and then the outputs for new samples can be quickly approximated 
by the trained AI/ML model in real time. However, an important caveat is that 
this approach requires that the physical model be an accurate representation 
of reality: you must have a strong physical understanding of the problem and a 
clear understanding of how any data sparsity correlates with the signal that you 
are trying to find. Indeed, the exploration work that NASA performs often implies 
a lack of clear physical understanding of the system, as NASA strives to explore 
new things for the exact reason that we do not yet understand them. However, 
science-driven tests that look for compliance with basic conservation laws and 
symmetries based on known physics can provide robust checks, while AI/ML 
approaches with GANs and autoencoders can also force out any noticeable 
differences between the models and actual data. In any case, when physics is 
included in an AI/ML approach, it is important to consider and understand what 
the physical models don’t know. 

Another approach to the data sparsity problem is to employ simple models (e.g. 
random forests) to complex (e.g. high dimensional) data, rather than higher-
order models (e.g. neural networks) to large/dense but simply labeled (e.g. 
one-dimensionally categorized) datasets. In healthcare, rare disease models 
are an example of this, where the sample is small but the datasets are rich due 
to focused experts collecting highly complex datasets on their human subjects. 
This has applications for astronaut studies where the numbers are small but the 
datasets are rich with complex situations of constantly changing physiology 
responding to a constantly changing environment. The caveat here is to avoid 
extrapolating from the small ends and to create not just predictions but also 
uncertainties so that you know the bounds of your predictions.

In general, data augmentation is not recommended for sparse datasets, as the 
effect is for the model to learn the details of your augmentation rather than to 
reduce the sparsity of your dataset.

Implications for Data Sparsity in NASA Science Research
Looking forward in the area of data sparsity, an exciting topic is the sparsity of 
explanation: eliminating as many features as possible (e.g. with ablation studies) 
to reduce the required number of feature types needed to train a reliable AI/ML 
model and therefore make it more generalizable. The biological sciences would 
benefit greatly from this, as expensive in-person measurements can limit the 
usefulness of AI/ML models in different scenarios, and finding surrogates for such 
measurements or eliminating redundant variables would increase the impact 
of the model. Nevertheless, in any AI/ML application, reducing the number of 
features is key to a more efficient and generalizable model.
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Data sparsity requires us to think particularly deeply about the problem we are 
trying to address and how it relates to our dataset. How does the data sparsity 
correlate with the signal that you are trying to find? How does this answer impact 
the method you chose to address the data sparsity? What uncertainty are you 
introducing into the system and will you still be able to answer your original 
science question given those effects? When confronted with data sparsity, the 
focus should be on the science question you are asking rather than the predictive 
power of your model. 

DATA HETEROGENEITY 

Challenges of Data Heterogeneity in NASA Science
Data heterogeneity comes in many different forms. A simple example would be 
the different formats of data collected from various sensors that need to be put 
on a common time cadence before usage in an AI/ML model. But it can be much 
more complicated than this. For example, when tracking astronaut health, one 
must ask whether astronauts have filled out their food frequency questionnaires 
with the same level of detail each time and if not, why? The earlier example 
of spacecraft telemetry was not only a data sparsity problem, but also a data 
heterogeneity problem: the different reporting triggers and error handling need to 
be harmonized in order to translate the dataset into a cohesive package where 
each report means the same thing. 

Labeling is another source of data heterogeneity. Different people will label the 
same dataset differently due to their own understanding, assumptions, and 
motivations. This concept of heterogeneity is often tackled by having multiple 
people provide labels for a given example and then taking the average or mode of 
the labels and assuming this gives a more pure label. However, this is not always 
the case, as the concept may be multimodal, rendering a simple average or mode 
an invalid concept itself. 

Additionally, specific expertise may be required to identify all the dimensions 
of heterogeneity. Datasets may appear homogeneous to non-experts (or even 
to experts), but in reality they require additional processing to truly harmonize 
them. This problem arises in Earth observing systems where measurements of 
“temperature” of the same place and time, but collected by different spacecraft 
and/or instruments, can be significantly different due to different calibrations 
or data recording formats. This is particularly acute when attempting to marry 
NASA satellite data with commercial satellite data, especially from commercial 
satellite constellations, as each satellite in the constellation may not be inter-
calibrated. This problem can quickly become overwhelming, especially if you 
want to do things like assign confidence intervals to harmonization and ensure 
reproducibility. 

3.2 Implications for Data Heterogeneity in NASA Science
Standardizing labels and associated metadata can be particularly helpful for 
addressing data heterogeneity. There are some best practices being established 

in different fields for standard labels (e.g. the Cancer Genome Atlas or JECAM 
for crops), but it can be very challenging in science research since more details 
need to be included than simple labels in order to do science; in many fields, such 
standards are not yet established and going back and re-labeling datasets after 
the fact can be prohibitively time consuming for researchers. One approach to 
address the complexity problem is to establish encapsulating classes that are 
separate from the more detailed scientific classification in order to simplify things 
enough for efficient labeling and input into an AI/ML model. 

Another approach is to use AI/ML to harmonize the data by using it to create a 
transformation that maps data from different spaces together (e.g. harmonizing 
observations from the Landsat-8 and Sentinel-2 Earth observation satellites). 
The problem is that this needs to be done for each pair or set of datasets and 
for cases where satellite constellations are not inter-calibrated; this could 
require constructing AI/ML models and maps for each pair or group of satellites. 
Additionally, AI/ML solutions should not always be viewed as the final answer 
and rather can be seen as guides for decision making by a human expert; the AI/
ML model can give us the information we need to make the decision, rather than 
make the decision for us.

One key thing to keep in mind is recognizing when data harmonization is not 
possible. Sometimes, the data really should belong to two different projects, 
and knowing when to stop attempting to harmonize a heterogeneous dataset is 
important. 

Future of Data Heterogeneity in NASA Science Research
As commercial companies and other space faring nations become increasingly 
important players in space science research of interest to NASA, harmonization 
of datasets will extend to those of different space agencies as well as commercial 
partners. If these data harmonization challenges can be overcome, then 
combining such differing datasets could also help to address data sparsity issues 
by using complementary datasets to fill in the gaps found in individual datasets. 
Overcoming these challenges will likely require the standardization of labels 
that can be used across datasets; while this has worked on smaller scales (e.g. 
between two specific datasets), scalability across multiple datasets from different 
space agencies and commercial partners will require careful discussions and 
clear agreement on the derivation and meaning of each label.

CONCLUSION

When dealing with data sparsity and heterogeneity issues, science researchers 
need to think deeply about the appropriateness and choice of the AI/ML model 
and the impacts of the methods they are using to address the sparsity or 
heterogeneity issues. This will depend on the problem being asked, resulting 
in a need to focus more on the scientific problem or question being addressed 
and less on the predictive power of the model. This memo presented common 
problems that scientists working on research of interest to NASA are facing, their 
tried and true solutions, and ideas for the future.
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FOCUS AREA 3

UNCERTAINTY 
AND BIAS
Bias in training data is a pernicious impediment in creating trustworthy 
AI workflows, unique to supervised learning techniques. How might we 
better learn how to plan for it and other sources of uncertainty, quantify, 
and exploit it?

KEY CONCEPTS
As the complexity of our requirements grow, the science community is 
increasingly turning to machine learning (ML) methods to crack difficult 
scientific problems and manage scientific equipment. Analyzing the biases of 
our datasets and quantifying the uncertainty of data and models is needed to 
obtain meaningful scientific results. The data is said to be biased if there is a 
systematic difference between the actual phenomenon and the model output, 
while uncertainty quantification is the total variance between predictions and 
reality, including instrument error, sample bias, computational errors, poor 
convergence of the training process, etc.

WHY DOES IT MATTER? 
Quantifying the uncertainty of our predictions and the biases of our datasets 
is critical in determining the validity and credibility of scientific results. 
But uncertainty can also be an important tool in identifying gaps in our 
understanding (or data sources) informing strategic decisions, such as 
instrument or mission design and improving models and workflows against 
benchmarks. Decisions involving large investments or management of 
resources require a clear understanding of the uncertainties involved. 
Uncertainty quantification is thus key to informed decision making and risk 
evaluation. 

IMPLICATIONS
Should managing uncertainty and bias be a strategic capability?  

Developing and standardizing a set of methods and guidelines for quantifying 
uncertainty may significantly increase the confidence in the validity of the 
research being developed across NASA’s SMD. Additionally, will confidence in 
ML enable proper use and for science to advance faster?  

WHAT CONTRIBUTORS SAY

“I’ve seen presentations where they talk about 85% confidence 
in their forecast or their prediction but that’s really compared to 

the sample data that they have. They don’t talk about the inherent 
biases in the sample population that they’re evaluating in order 

to create training data. If they pick the wrong set of training data, 
they can get what looks like a very highly accurate reproduction of 
the model forecasts compared to in the validation process of the 

machine learning workflow, but it’s not really 85% confidence that 
they’re accurately predicting.”

“If you can’t understand the uncertainty you won’t be able to 
accurately understand the results.”

“Uncertainty can be a source of insight.”
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TECHNICAL MEMORANDUM: FOCUS AREA 3 
UNCERTAINTY AND BIAS

Authors: V. Ashley Villar, Columbia University
Michael Little, NASA Goddard Spaceflight Center

INTRODUCTION

The analysis of uncertainty and bias is growing in importance to the scientific 
machine learning community. Many of the ideas and concepts are derived 
from experimental physics or statistics but require unique characterization to 
have the right impact on Earth and space sciences in NASA’s Science Mission 
Directorate (SMD).  In the current state of these scientific discipline areas, analysis 
of uncertainty and bias have uneven application. Some papers discuss them 
carefully and others not at all.  Even the vocabulary varies across the domains and 
the observational and modeling data.  Consistent multi-divisional policy is elusive, 
but the discussion would yield far more insight into the nature of those differences. 

Uncertainty and bias considerations are important both from a scientific point 
of view but also to the credibility of the work and its use in applied science.  The 
value of measurements and the need for improvements in those measurements 
can be derived from the evolution of the uncertainty and bias in them. How those 
measurements, models, and analytic results can be used for the next cycle 
of investigations is directly determined by the stated uncertainty and bias in 
them.  Three things make the use of machine learning in scientific investigations 
untrustworthy.  First, the results of modern scientific investigations challenge 
conventional wisdom in many areas and make the public and management 
skeptical about it’s validity; explainability is important to credibility. Second, the 
mathematical underpinnings of machine learning are complicated and difficult 
to understand without a long and specialized academic background which 
makes it difficult to access by Earth and space scientists; finding people who 
can work in both camps and are contributing members of domain science 
teams is challenging. Third, recent publicity in two areas has created additional 
credibility issues. The recent publicity for misuse of machine learning in political 
and sociological activities and the hype of the scientific press has created 
considerable distrust of the results. A healthy scepticism is important for well-
founded science, but an objective resolution of this tension must be based on 
experimentally derived facts about reality, not speculation and bluster.

The participants in the workshop identified three actions for SMD as multi-
divisional advances:

• additional training for NASA SMD technologists, managers, engineers, and 
scientists; 

• specific requirements in research solicitations for a plan to treat uncertainty 
and bias and specifically, in the selection of labeled training data, followed up 
during periodic reviews; and 

• inclusion of adjunct processes in the emergence of scientific MLOps to 
illuminate uncertainty and bias.
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DIGGING DEEPER

Purpose and Goals 
The purpose of the uncertainty and bias session was to identify key issues in 
characterizing uncertainty and bias in the use of artificial intelligence in scientific 
investigations.  For the purposes of this session, uncertainty is defined to be 
the quantification of the spread in observed and/or measured properties. This 
includes aleatoric uncertainty (statistical uncertainty, which can be reduced 
through more observations) and epistemic uncertainty (systematic uncertainty).  
Bias is defined to be the systematic difference between the actual value and the 
value determined by some estimator. Specifically, strategies to deal with bias and 
uncertainty fall under the large umbrella of uncertainty quantification (UQ).

UQ is increasingly an important aspect of AI/ML methodologies. Given the 
intrinsic degenerate nature of neural networks, epistemic uncertainty can be 
challenging to quantify in a Bayesian sense (i.e. one cannot marginalize over the 
many neuron weights). Bias becomes particularly challenging to quantify outside 
the bounds of the training set used to train these models. UQ is particularly 
important in the physical sciences, in which repeated observations and stochastic 
systems naturally result in probabilistic measurements. Combining a Bayesian 
framework with ML methods is a rapidly growing field. This session focused 
on the needs of the NASA community for UQ, the state of the art in UQ for ML, 
and the future innovations necessary to fully incorporate ML approaches into 
traditional physics-based pipelines.

This session was led off by a talk by Dr. Brain Nord of Fermilab, whose 
presentation is available.  Dr. Nord suggested the discussions consider the 
following provocations:

1. AI is untrustworthy: UQ (including bias) is the most important challenge for AI 
applications; 

2. we lack, but need, a unified approach to solving this problem across AI 
developers and practitioners; and 

3. language and jargon are not unified across stakeholder groups, and 
communication across practicing communities is a key bottleneck for 
development.

The subsequent discussions were divided up into three phases, each primed with 
questions for discussion, as described in Table FA3-1.

TABLE FA3-1
QUESTIONS FOR DISCUSSION IN UNCERTAINTY AND BIAS

Understanding the 
problem

• How does uncertainty in data and models impact your work? 

• How can we design experiments that capture bias in data collection 
and analysis?

Understanding the 
problem

• What would a good uncertainty plan look like? 

• How could we determine how much the training data impacts our 
results?

Understanding the 
problem

• What could be the guidelines to help identify sources of potential 
error? 

• What do you find difficult when trying to include uncertainty quantifi-
cation and bias into your research plan?

Suggestions to 
improve things

• How could the process of uncertainty quantification be 
standardized? 

• Do you have a concrete example of how uncertainty quantification 
would impact the quality of your research/application?

Suggestions to 
improve things

• Would uncertainty estimation help the reproducibility of the results 
and how? 

• Could the adaptation of the uncertainty quantification methods for 
specific use cases be reduced and how?

Suggestions to 
improve things

• How can we communicate uncertainty and biases to end users for 
decision-making processes? 

• What do you think is needed for uncertainty quantification to be-
come common practice?

Imagining a future 
world

• What initiatives could help scientists from different divisions to un-
derstand uncertainty and how to work with it? 

• How could we involve domain experts on the discussion and on 
different projects where uncertainty quantification is needed?

Imagining a future 
world

• Should there be a mandated uncertainty plan for proposals and 
why? 

• Could we develop a methodology for uncertainty quantification that 
could be valid for different research domains? Can we think of what 
it would take?

Imagining a future 
world

• What concrete points of action can we take to increase the use of 
uncertainty quantification methods across the different divisions for 
research projects? 

• Should there be an effort to create a set of tools and resources for 
uncertainty quantification?
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UNDERSTANDING THE PROBLEM

Origins of Uncertainty and Bias 
In designing an experiment to create insight about a natural phenomenon or 
physical process, the difference between the physical state and the reported 
value from the experiment represents the sum total of error. There are many 
contributors to this error; some are stochastic, and some are systematic.  It 
is essential for the scientist to identify and aggressively eliminate or properly 
compensate for these contributors in order to get the best possible explanation of 
the phenomenon. In some cases, this is an iterative process alternating modeling 
and analysis with making new observations. In some cases, the latter step also 
involves improving the instruments used to make the observations in ways 
illuminated by the modeling and analysis.  Where machine learning is used as an 
analytic or modeling device, this is much more than simply verifying the model’s 
ability to predict the data in the validation subset. While an important step, the 
uncertainty and bias must ultimately be against the actual phenomenon. 

The origin of uncertainties and biases in scientific observations can be broken into 
four broad sources:
• experiment design;
• instrument and test technique;
• science data processing; and
• science data analysis and modeling.
An understanding of each is critical to using the scientific data created by the 
observation. A thorough analysis of the sources of uncertainty is necessary 
because, to date, estimates are often too low.

Current Practice
The discipline of uncertainty quantification in the Earth and space sciences has 
uneven application to modeling and observations.  In Earth science, in particular, 
there are widely varying definitions of terms, and typical characterizations are of 
only one aspect of the total picture. For example, some remote sensing datasets 
only go so far as to identify missing measurements in the datasets.  Others 
qualify the measurement with qualitative adjectives (e.g. excellent, poor, etc.). 
These practices help the instrument team characterize and validate instrument 
performance but compound the problem of characterizing the uncertainty and 
bias in machine learning workflows. workflows in which quantification of error 
is essential. Even if uncertainty is quantified, the standard drastically varies 
across subdisciplines. In some cases, a Bayesian full posterior may have been 
estimated. In others, a Gaussian is always assumed with the mean and variance 
always reported. UQ is recognized as an important issue, but the lack of well-
known and trusted techniques makes it still an area of research and much further 
discussion.

Furthermore, there is a language barrier across subfields. This is especially true 
when directly applying new methodologies from data sciences. Mathematical and 
AI-specific jargon prevents space scientists from readily adapting new methods 
for their own purposes (e.g. the common Lagrange multiplier used in physics is 

replaced with “regularization” in AI contexts).  Some discussions of uncertainty 
convey a negative connotation, implying wrongdoing, whereas uncertainty 
quantification often is a mechanism for identifying the path to a balance between 
resources available (time, funding, and staff) and precision needed to adequately 
test a hypothesis.

As we try to encapsulate our understanding of natural phenomena and physical 
processes in the physics-based and data-driven models, validation of the output 
compared to observational data becomes a measure of how good the models 
are.  Uncertainty and bias becomes a key element of diagnosing the differences. 
In fact, some researchers indicate that the investigation of key drivers in physical 
model errors is enabled by machine learning techniques in comparing the two.  

The consideration of uncertainty and bias plays a key role in experiment design to 
incorporate appropriate techniques and processes. The choice of instruments are 
often dictated by the acceptable uncertainty in understanding the phenomenon. 
For example, some radiometers have high accuracy (~1% error) but are very 
expensive to construct and to maintain. Others have higher error bars but are 
much more affordable. Climate modeling requires high accuracy, whereas 
weather forecasting is less stringent. If an understanding of the phenomenon 
does not require higher accuracy, the experiment design would select instruments 
with higher UQ to invest in other aspects of the campaign.  

The deliberate identification and elimination of systematic bias in experiment 
design extends into the data analysis phase. First, the collection of the right 
observations is critical. Experiments that fail to collect a sufficiently broad set of 
data create a bias that misses some behavior. Experiments that collect too much 
data in one regime and not enough in another similarly create a skew in the results 
that limits the value of the conclusions. Confirmation bias is a common experience 
in the selection of data that tends to support a poorly formed hypothesis instead 
of disproving it.  

This also pertains to the selection of sample data for use in training models. 
Because of the shortage of well constructed labeled training data sets, 
practitioners are sometimes desperate enough to use available sets without 
adequately reviewing for how well they represent the observations under 
consideration. Techniques for labeling sample data must consider their impact 
on UQ. The use of Bayesian distributions from multiple annotators instead of a 
single label reduces the UQ; often accurate labelling has a more significant impact 
than dataset size in ML-aided tasks. This is well documented in Gebru et al. in the 
context of a language model but is equally as deceptive or misleading in scientific 
observations.

Similarly, the re-use of data in analysis for which its collection process was not 
designed, requires careful consideration of the uncertainties and biases to ensure 
the use is appropriate. Without uncertainty and bias characterization, it is easy to 
use data inappropriately and draw fallacious conclusions.
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Why is Consideration of Uncertainty and Bias Important?
There are two primary implications of the evaluation of uncertainty and bias.  First, 
in conducting a campaign to understand the nature of the phenomenon, analysis 
of the progress in reducing uncertainty and bias gives an indication of how much 
further it must progress before the topic has been adequately characterized.  This 
depends upon what we define as reliability: is it our ability to classify everything 
correctly, or is it our ability to accurately predict the rate at which we classify a set 
correctly? Those are two different measures. Too many predictions without UQ 
are not scientifically valid. Take for example detection of trends in a time series; if 
the model doesn’t have an uncertainty range, there is no way to interpret the trend 
result. 

Second, the credibility of the scientific results are directly affected by the 
uncertainty and bias associated with the results. In explaining results to both 
scientists and laypeople, if we have a clear estimate and explanation for the 
uncertainty and bias, it strengthens the credibility of the model and the results/
forecasts. However, as previously mentioned, UQ is often either
adhoc or overly qualitativer, or qualitative yet difficult to understand without 
proper training of the scientific community, because the uncertainty and bias are 
poorly addressed or not at all. The contribution of questionable results makes 
little progress towards the overall understanding and are often not trusted by 
other competent scientists. How error, uncertainty, and bias propagate through 
deep learning models is unclear when you can’t interpret the intermediate stages 
and methods to develop interpretable and statistically rigorous ML models are 
ongoing. The former is particularly important when results are counter-intuitive.

SUGGESTIONS TO IMPROVE

Communication and creation of a standard practice are consistent themes in 
suggestions for improvement. We highlight here specific suggestions to (1) create 
a common language and simple examples; and (2) set similar expectations of UQ 
reporting. 

An Uncertainty and Bias Plan for experiments would improve the quality of the 
experiment.  It should define uncertainty and bias in the context of the experiment 
or campaign. It should also include a thorough analysis of sources and a way 
to compare the results to ground truth.  Considerations of explainability and 
physical-based knowledge and conservation laws need to be factored into 
the models. It should also address compensation for sparse or mixed data.  In 
physics, the conventional wisdom is that more data yields a lower statistical 
uncertainty, yet systematic error may always dominate in AI/ML studies., Other 
considerations include:
• if data augmentation can be used to mitigate observational biases, and if 

there exists prior (physical) knowledge which can be used to generate realistic 
simulated data; 

• the prevalence of epistemic uncertainty in modern supervised learning, and 
how this uncertainty can be quantified by having a strong human feedback 
loop over real-time predictions, and periodically re-iterating on the model; and 

• if we can say, in the design of an experiment, what the minimum amount of 
data is to produce a reasonable uncertainty estimate (the size of the training 
data is not as important as making sure it is representative of the underlying 
phenomena being classified or detected).

UQ is a developing field in ML. There are currently, loosely, three ways of probing 
UQ in neural networks in particular. 

1. Probing the model as a blackbox—the more common method. Neural 
networks are largely treated as a black box built into a scientific model. 
Uncertainty is probed via ad hoc methods appropriate for the problem (e.g. 
Monte Carlo resampling the inputs based on measured errors). Ablation 
studies (removing components of the neural network) is another common 
tactic. Cross validation of samples is one of the most commonly used 
techniques to test typical uncertainty of the model. 

2. Directly modelling the probabilistic nature of the system through 
inclusion of Bayesian inference—a developing solution. The number of 
models of this nature is rapidly expanding (e.g. Bayesian neural networks, 
variational autoencoders). However, there is a significant barrier to non-
statisticians to use these models out of the box. Development of deep 
probabilistic language (e.g. pyro, mc-stan) are providing tools to construct 
such models, but scientists lack toy examples and tutorials to explain these 
tools. 

3. Building directly interpretable models—a state-of-the-art solution. This 
is the most valuable solution, but the least mature approach.  Considerable 
research is ongoing to develop fully interpretable and Bayesian frameworks 
but needs expansion to include techniques for assessing and interpreting the 
uncertainty and bias in the models.
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IMPLICATIONS

Further research into the theory and application of techniques for assessing 
uncertainty and bias is needed. This work would be applicable in all five NASA 
SMD divisions and would be stronger and better established for it. There was 
considerable debate as to whether tools or techniques are appropriate. The tool 
development option makes it easier to introduce the UQ considerations but tends 
to result in application without understanding. The technique approach is harder 
to re-use but requires the user to understand what the results mean. 

Further staff education in how to apply these techniques to specific experiments 
and observational campaigns is valuable. Familiarity also can lead to better 
refereed journal articles and also proposal development and evaluations.

Benchmarks for UQ would be valuable, both in guiding the design and execution 
of experiments but also in assessing the scientific validity and value of proposals 
and papers.

Several other techniques to be considered:
• sensitivity analysis which starts with one end of the error/uncertainty of input 

features and repeats at intervals through the other end, pass each through 
the model for inference to see how it impacts the output; basically, we 
sampled from a distribution of inputs to simulate the distribution of output; 

• use of validation/quantification techniques such as K-fold cross validation 
can better quantify the uncertainties in the model and training;

• augmenting datasets to be more robust to noise. In the case of images, for 
example, one can add white noise and shift/rotate the images;

• visualizing what a model is learning over a dataset or for representative 
examples (e.g. feature importances, SHAP values, class activation maps, 
etc.) can help give confidence or identify pitfalls of a model;

• outlining and anticipating worse case scenarios (with either bogus data, or 
model parameters);

• provide visualizations/heuristics/your testing data together with the model, so 
users can replicate your validation analysis with their data, and compare;

• defining standard tests (unit, integration, end-to-end) to monitor uncertainty 
especially in continuous integration settings;

• collaborate across a diverse team from a variety of disciplines and 
backgrounds to identify sources of bias;

• methods that evaluate the robustness of the model’s predictions under the 
adversarial perturbation can quantify/detect the systematic error of the model 
or bias;

• make clear the social-curator-post-processing biases and uncertainties, 
verses the biases and uncertainties within the data itself (how it was collected, 
limitations, confounds); and

• Feature importance can be used to detect/identify source of bias/error, and 
automatic approaches such as layer-wise relevance propagation can be 
used.

Imagining a Future World

In future scientific investigations, uncertainty and bias play an important role in 
defining the scientific objectives, defining the experiments and campaigns, and 
in assessing the roadmap for advancing the knowledge of the phenomena. They 
are included in solicitations to encourage appropriate consideration in award 
selection and to expand the number of people thinking about this problem. The 
way to include this without derailing current scientific thinking was the subject of 
considerable debate. 

Analysis of uncertainty and bias are commonly accepted practices. While addition 
of the requirement to include analysis and error bars in proposals and published 
papers may be difficult, reviews would accelerate this process by discussing the 
presence or absence and could increase the visibility of this important aspect of 
the science. 

Review of both proposals and refereed journal articles and conference papers 
includes assessment of how well they treated uncertainty and bias. They explain 
the relevant sources and how they compensated or mitigated them and provide 
an estimate of the residual uncertainty and bias that cannot be affordably 
remedied.

Development of re-usable training data for supervised learning is enabled through 
competitive campaigns which encourage demonstration of use in models. The 
metadata includes an analysis of the uncertainty and bias and the boundary 
conditions inherent in the data for re-usability. This data is available in open-
science repositories and has a pedigree of review for use, including what is 
outside the boundary conditions.

Tools for analyzing and improving the uncertainty and bias have been validated in 
multiple domains, vouching for their utility and stability and validity. This may take 
the form of a library or wiki describing the techniques. ML workflows have been 
operationalized and validated along with DevOps environments that enable more 
efficient and effective application.

A noteworthy trend in techniques is the use of MLOps for DevOps for ML, that is 
standard development practices for how models are constructed, tested, and 
validated. 
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KEY THEMES IN UNCERTAINTY AND BIAS

Three key themes recur in discussions of uncertainty and bias:
• sources of uncertainty and bias;
• techniques for identifying, assessing and compensating for uncertainty and 

bias; and
• means for increasing the scrutiny of uncertainty and bias in the review of 

proposals and the publication of research. 
 
 

KEY CHALLENGES IN UNCERTAINTY AND BIAS

NASA SMD needs a consistent model for addressing uncertainty and bias in 
observations. The lack of a common vocabulary is a major obstacle to multi-
domain conversations and re-use. This vocabulary also should avoid allowing the 
reader to infer negative connotations about uncertainty and bias but rather view it 
as an important aspect of understanding the data and its limitations.

NASA SMD scientists and engineers need a consistent training experience to 
perform analysis of uncertainty and bias in observational data and model output. 
This should include a survey of the various sources of uncertainty and bias and 
techniques for probing and diagnosing them. Some considerations include:
• the size of data sets and the cost of computation;
• how to deal with non-linear or chaotic situations;
• indentifying the unknown unknowns;
• understanding when bias matters; and
• the difference between addressing bias that is known (gender representation 

in astronaut health data) and bias that isn’t known to the researchers.

The lack of standard and well understood techniques for assessing uncertainty 
and bias in scientific investigations results in their absence in journals and 
presentations about the results. Considerable work has already been 
accomplished, but is not collected in a way that can aid the NASA SMD research 
and engineering communities. 

SUGGESTIONS TO IMPROVE THE FUTURE OF UQ FOR 
NASA APPLICATIONS

Here we present seven suggestions.

1. Set a common language for UQ, with simple examples that are directly 
applicable to space studies. Currently, ad hoc methods dominate UQ 
methods, with new techniques developed for each specific application. While 
this is superior to no UQ, it creates a challenge of the interpretability of UQ and 
the ability to combine meaningfully studies. A common set of techniques and 
examples of their applications would be beneficial. Example techniques of 
interest may include: cross-validation studies, ablation studies, and Bayesian 
inference methodologies (e.g. with deep probabilistic modelling programs 
such as mc-stan, pyro, etc). Importantly, incorporating truly Bayesian and/
or interpretable methods, which are being actively developed, require a set of 
simple tutorials for NASA users.  

2. Set similar expectations of how UQ is reported and interpreted in 
studies. In this case, a simple solution is to encourage the reporting of UQ 
and a clear statement of how it is generated and meant to be interpreted. 
For example, drop out can be used to measure epistemic uncertainty in 
neural networks but will not account for aleatoric uncertainty. Often there is 
a mismatch of assumptions between statisticians, NASA scientists, and ML 
practitioners. Being explicit about limited or ad hoc UQ is especially important 
for broader interpretation.  

3. Improve NASA researcher awareness and training about uncertainty 
and bias. This should include design of experiments, including handling 
uncertainty and bias. It should provide a framework for evaluating sources 
of uncertainty and bias, as well as benchmarks. A very effective delivery 
technique would involve a workshop with sample problems that could solidify 
the attendees’ understanding. 

4. Develop techniques for evaluation of UQ.  This would include a protocol 
for assessing various sources of uncertainty and bias. Considerable research 
in this area is being conducted at other federal and ESA research institutions 
and should be coordinated with DoE, NSF and NIH. 

5. Include specific requirements for consideration of uncertainty and bias 
in competed research. Solicitations should require a plan for assessing UQ.  
Proposal evaluations should specifically address the degree to which UQ is 
correctly handled.  

6. Journal guidelines for the inclusion of UQ or the creation of UQ 
benchmarks would aid in the problem of visibility. Coordinate with 
publications to include a requirement to address UQ in all papers. This 
includes requiring referees of papers to assess the robustness of UQ 
treatment and make deficiencies a required corrective action.  

7. We note that NASA SMD scientists have the opportunity to be leaders in 
the machine learning UQ field by defining the benchmarks necessary in 
machine learning algorithms to be useful for NASA-related science.



52 53Uncertainty and Bias Uncertainty and Bias

CONCLUSION AND NEXT STEPS

Uncertainty and bias in artificial intelligence is an important component to 
robust AI/ML research and applications. It requires an effective framework and 
scientifically robust techniques for describing and estimating it. No scientific 
discovery is fully useful without analysis of the uncertainty and bias and a 
description of how it propagates through the calculations to blur the results and 
impact the conclusions. While instrumentation and test techniques have long 
illuminated the effect on measurements, the emergence of machine learning has 
fallen behind in characterizing how uncertainty and bias affect such models and 
analyses. 

It is suggested that NASA SMD begin a short research program to provide guides 
and aids for identifying and characterizing uncertainty and bias in machine 
learning workflows and use the results to educate the NASA SMD community in 
using them in their work. Collaboration with NSF-funded work in this area would 
play a major role in such a research program. Brief educational webinars and 
training can disseminate summaries of this work to the community at large.
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FOCUS AREA 4

REPRODUCIBILITY
Reproducibility of AI experiments is ‘more than just open source code’. 
What does good reproducibility look like?  

KEY CONCEPTS
ML-assisted research is said to be reproducible when the presented 
results can be reproduced to a similar level of accuracy by a new team with 
independent research artifacts. Replicability refers to accessing the original 
data and code and these being made openly available for others to repeat 
the footsteps of the original researchers. Best practice means releasing well-
documented, annotated, and fully open code and data that affords others to 
independently reproduce the results of a study and extend them (perhaps to a 
higher TRL).

WHY DOES IT MATTER? 
When a ML result is a black box, any results that are not replicable or 
reproducible can invalidate the results (particularly exciting claims) and casts 
doubt on ML methods. Clear reproducibility of scientific studies improves the 
credibility and reliability of the results for integration into ongoing research and 
is the key for open science, as it allows researchers to set baselines and safely 
stand on the shoulders of published methods.

IMPLICATIONS
Can we challenge the way we do and share science?

Code semantics are not standardized and usually specific to the author. For 
this reason, even code that is publicly shared can be hard to understand 
and reproduce. Standardizing good practices for sharing and making our 
workflows reproducible will allow other researchers to build on the work, 
saving time and resources and the temptations of ‘not invented here’. The 
current culture of science is based on publishing and results, but without 
investment in reproducibility; it doesn’t necessarily improve the scientific 
output and knowledge as a group. 

WHAT CONTRIBUTORS SAY

“It is harder to release research code than to publish a paper, this 
process takes about a year. Code continues to change and by the 

time it is able to be released it is already out of date.” 

“One thing that can happen in science is due to low funding levels, 
you don’t always have the size and the team that you want in 

order to polish things off as much as you want to. I’ve certainly 
experienced projects where there’s just nobody around to get 

something polished, and deployable. And so it continues to be a 
science hack.”

“Reproducibility has many facets: sometimes the key issue is data, 
other times it’s code, other times it’s all of the above.”
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TECHNICAL MEMORANDUM: FOCUS AREA 4  
REPRODUCIBILITY

Authors: Milad Memarzadeh, NASA Ames Research Center (USRA), Moffett Field, 
CA, Steven M. Crawford, NASA Headquarters, Washington, DC

INTRODUCTION

Reproducibility is a core tenet of the scientific process. Given sufficient 
information and resources, the results of an experiment should be able to be 
reproduced. Scientists need to provide sufficient information about how they 
produced their results in order for them to be reproducible. As new technologies 
are adopted into the scientific process, the requirements for reproducibility 
need to be defined for them. Unfortunately, there are a number of reasons 
that might limit the reproducibility of scientific results derived using machine 
learning (ML). In this note, we explore the challenges to reproducing scientific 
knowledge generated through machine learning and solutions to enable further 
reproducibility of the results. 

As Dr. Christine Custis noted during her talk, reproducibility also has different 
meanings and requirements for different groups. These can include internal 
accountability, cross divisional transparency, and external reproducibility.  The 
requirements for a model to be reproducible internally to a team can be different 
for those in a different part of an organization or to groups external to the 
organization.  Further, the needs for a model in a production environment versus 
an early prototype can also be very different. While these groups have different 
needs, improved documentation of the entire process can significantly improve 
the overall reproduction of a model. 

In this technical memo, we present the challenges for reproducibility of machine 
learning along with some potential solutions. The ideas presented in this note are 
a summary of the discussions held at the 2021 NASA SMD AI Workshop. 

For the purposes of this note, we have two definitions to help differentiate 
between common practices: ML-assisted research is said to be reproducible 
when the presented results can be reproduced to a similar level of accuracy by a 
new team with independent research artifacts. Replicability refers to accessing 
the original data and code and these being made openly available for others to 
repeat the footsteps of the original researchers.
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DIGGING DEEPER

Defining Reproducibility
One of the first challenges is in defining and understanding what is needed for 
reproducibility. 

Studies can often be replicable with all of their software and data available.  
However,  does this mean the study is reproducible?  While an independent team 
may be able to recreate the results using the same software and data, this does 
not mean that the results may be reproduced given a different data set or software 
package.  For example, the data set used might be unique and extremely large or 
potentially not well documented. The software might only be available as a black 
box: an executable without clear information on the underlying algorithm. 

There is also a distinction between open-sourcing the code and reproducibility. 
Just sharing the code with the community does not guarantee reproducibility, 
and researchers need to go beyond that and provide specific examples and 
documentations (such as Jupyter/Ipython notebooks) to facilitate the replication 
and repetition of the experiments. 

Another aspect that is a roadblock to reproducibility is difficulty in standardization 
and translation of information to a greater community, especially in domains such 
as the medical field where privacy is a big factor.

In many fields, not everything is deterministic. In applications that are dealing with 
stochastic processes, the reproducibility might mean extra steps to take into 
account necessary steps for uncertainty quantification.  

To help address these concerns, further guidance can be given on what 
reproducibility means especially when working in ML. Along with the definition of 
reproducibility, this should include:   

1. at a minimum, the software and data should be accessible to assure 
replicability;  

2. to help ensure reproducibility, the entire machine learning lifecycle should be 
sufficiently documented including obtaining and cleaning data, details of the 
algorithms used, training and testing of the models, and usage of the models; 
and 

3. best practices for handling stochastic processes in both data sets and 
models. 

Supporting Reproducibility
While reproducibility is a key tenet of scientific research, incentives are rarely 
aligned with this goal. For example, the hard constraints and requirements for 
making scientific work and research reproducible and sharing the code among 
the research community can be a discouragement, especially when the research 
code is not appreciated as much as publications in some scientific domains. 
For some, the bar for sharing the lowest-level research code can be very high, 
to the extent that researchers might find it cumbersome to open-source their 
code. Moreover, the process of open-sourcing the research code and providing 
reproducible examples can take a long time (over a year), which by that time, the 
code has gone under multiple revisions and it is already out-of-date.

Another underappreciated aspect of reproducibility is the extent of 
documentation that is necessary.  Documentation is an often neglected step of 
the development process with little support for writing or developing it. Outside 
of papers, researchers are not rewarded or incentivized to write documentation.   
Services that make documentation easier throughout the entire ML lifecycle such 
as MLOps or MLflow should be encouraged.  

One of the most important aspects of reproducible work/research that is often 
ignored is the maintenance phase. Sometimes the duration of the maintenance 
process might be much longer than the project itself and specially the duration 
might be different for NASA SMD data and code, compared to industry/
commercial products.   

As such, the following practices would help increase the support for 
reproducibility in machine learning: 

1. there should be specific allocated funding for maintaining the research code 
and improving the reproducibility of the research for the time beyond the 
actual project’s phase;

2. Improve the documentation provided which can include training on usage 
of tools that make it easier, normalizing the expectations for the type of 
documentation that is provided, and providing support for documentation of 
processes; and

3. track the usage of the code and data sets developed and published by 
the researchers, including an official citation of the code usage within a 
publication, but also how many people have re-used and built on the shared 
work.
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Trust in Machine Learning 
There is currently skepticism and lack of trust for AI/ML techniques and their 
deployment in scientific domains. This is due to the fact that a lot of these 
techniques are considered a black box model, which lacks reproducibility and 
explainability. A reproducible AI/ML development can improve the trust of domain 
scientists and practitioners in these techniques and increase their use and 
applicability. 

Even for replication, sufficient information must be provided including the version 
of the software and data. Software development and machine learning are 
evolving rapidly, and without information on the version of the data, the study may 
be difficult to reproduce. In addition, data sets evolve as well with new processing 
techniques, updated labels, or additional cleaning. As the underlying training data 
set changes, the results of the model may change as well. 

Using commercial platforms such as MLOps or MLflow can definitely help 
reproducibility by allowing a proper tracking of the development of data, code, 
and models. Moreover, having in-house experts in data engineering best 
practices and reproducibility would facilitate and improve this challenge. Their 
role would not only be to support the scientists in making their work reproducible 
but also to design and implement training or educational context for scientists to 
follow in their day-to-day work that improves the reproducibility of their work. 

Supporting the submission of reproducible code along with data as part of the 
publications of scientific results into the review process may help increase the 
reproducibility of the manuscript. In this context, reviewers are then not only able 
to review the papers but also replicate the results presented in the paper. This 
may, though, result in the review process taking a longer time. 

Moreover, journals should reward null (negative) results that preceded success 
as well. The culture of publishing, which mainly focuses on successful techniques 
and new discoveries, should shift towards rewarding null results and failures to 
ensure that knowledge and experiences are better shared. 

Furthermore, supporting studies that reproduce the results from machine learning 
focused projects can help increase the trust in machine learning. With many 
of the techniques used are quite new, having multiple studies that are not just 
replicating, but reproducing results using independent analysis helps to increase 
the trust in the initial results produced. 

As such, NASA SMD has an opportunity to help increase the trust in ML produced 
science by: 

1. supporting publication processes including releasing the software, data, and 
documentation underlying the results including versioning, encouraging the 
publication of null results, and supporting studies that attempt to reproduce 
the results; 

2. linking the data with the code and the models developed to make inference 
about the data is an absolutely critical step for reproducibility; and 

3. providing environments that make it easy to reproduce the results of ML 
studies which can include systems for documenting the entire lifecycle and 
resources for sharing and running the models. 

Opportunities in Reproducibility
Reproducibility brings accountability to the science result, and it enables 
continuity of the research outcome and products. When scientific work is 
reproducible, other researchers can build upon the work more easily and improve 
the performance of models in the future. Moreover, having the data and code 
being used by other researchers and further developed by them improves the 
reliability and quality of the code and its applications. Simplifying and supporting 
the process to make the data, code, and documentation as accessible as 
possible will help support reproducibility in machine learning and its application in 
the scientific domains. 

The utilization of the commercial cloud services and opening the data and code to 
a broader community can also improve collaboration and eventually help achieve 
a more reproducible work. Reproducible environments can also be supported 
using technologies such as Docker that allow a snapshot of the software used for 
a program.  

Similar to the data management plans, which is a requirement in the proposal 
stage of NASA’s SMD, making the code and software open source and 
reproducible should be the requirement as well (i.e. a reproducibility plan). More 
importantly, this should be a continuous process throughout the duration of the 
project, the principal investigator (PI) and the researchers should be encouraged 
to keep this a continuous process. A common mistake is to wait until everything 
is developed and then spend the last few weeks on reproducibility and code-
sharing. 

The process of software release at NASA SMD can be difficult which limits the 
ability to openly share reproducible scientific research. A simple solution could be 
that the science/research part of the process can be separate and different from 
the process for code that operates launch vehicles or are mission-critical. 

NASA SMD can also make best practices available to the community as guidance 
to help improve the reproducibility of their work.  An example of this from Dr. 
Custis talk included these questions:
• Have you used a checklist to ensure your code is complete?
• Have you hosted your model files?
• Are you using standardized model interfaces?
• Have you made demos available?
• Are you using leaderboards?



62 63Reproducibility Reproducibility

CONCLUSIONS

A key tenet of the scientific process is reproducibility. In this note, some of the 
challenges to reproducibility were highlighted along with potential solutions. 
NASA SMD can provide further guidance on reproducibility including definitions 
and can provide improved policies that would support reproducibility. A key 
aspect to reproducibility is sharing the data, software, and documentation 
related to machine learning models, and this means supporting the sharing of the 
models through simplified processes and supporting technology. Incentivizing 
reproducibility can help to further the adoption of machine learning in scientific 
practices. 
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Cataloging and Sharing AI Ready 
Data and Models

FOCUS AREA 5

CATALOGING AND SHARING AI 
READY DATA AND MODELS

What is best practice in effectively managing AI resources?

KEY CONCEPTS
The development of tools for machine learning (ML) (such as developing 
frameworks and datasets) is rapidly evolving. For this reason, publishing 
a paper and saving the model and the code is not enough to ensure 
reproducibility. Cataloging refers to the process of creating metadata 
representing information about the dataset. Effective cataloging includes 
subject matter expertise (SME), authors to contact, and other properties of 
the dataset or the models.

WHY DOES IT MATTER? 
The way ML models are shared is not standardized, and they are scattered 
across the internet. The process of acquiring and preparing a new dataset 
is time and resource-consuming—with significant impedances for others to 
adapt to their research. Also, not having effectively curated and catalogued 
projects results in a lack of baselines for researchers. The consequence of this 
lack of baselines is a nest of multiple results that are unwieldy to compare and 
build on. 

IMPLICATIONS
Will proper cataloging of models create more reliable, verifiable and 
reproducible results?

Creating a library of curated, cataloged research outcomes has the potential 
to help to mature AI/ML models for use by the NASA science community; 
improving the science we do and helping researchers advance at a faster 
pace towards a common goal. 

WHAT CONTRIBUTORS SAY

“From the commercial side, we had a project where we were 
dealing with video, specifically and dealing with trying to 

label things that you saw in video. And we were doing a new 
software delivery. We didn’t realize that our model was written 

in pytorch 0.9. And it kept failing in pytorch 1.0, because it 
was not backwards compatible. It’s not enough to just save 

off a model, you’ve got to save some information about which 
framework it was, which version of that framework it was, 

because things are moving so fast.”

“Training models require good, labeled data. A lot of AI/
ML researchers lack good training data, particularly as we 
get to more science data. Sharing good, curated sets, will 
help to mature AI/ML models for use by the NASA science 

community.”
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Cataloging and Sharing AI Ready 
Data and Models

TECHNICAL MEMORANDUM: FOCUS AREA 5
CATALOGING AND SHARING AI-READY DATA 

AND MODELS

Author: Christopher Lynnes, NASA/GSFC

INTRODUCTION

NASA has a long and storied history of openly sharing its science data, the better 
to recoup the investment required for spaceborne data collection. Data systems 
in multiple divisions have been providing science data since the early 1990s, from 
the Planetary Data System to the High Energy Astrophysics Science Archive 
Research Center to the Earth Observing System Data and Information System. 
As the Science Mission Directorate evolves from open data to open science, the 
need arises to share additional aspects and artifacts of the research process. In 
this session’s opening provocation, Dr. Stojnic emphasized the importance of 
these other aspects, noting as potential shareables:  

• tasks (e.g. named entity recognition);
• datasets;
• models;
• code;
• results; and
• papers.
(Stojnic et al., 2020).

The focus area on cataloging and sharing AI-ready data and models 
discussed several technical aspects of the sharing process. However, as the 
day host Dr. Ramachandran noted, sharing science early in the process is a 
narrow view of open science, that is necessary but not sufficient. In their recent 
paper, Ramachandran et al. (2021) defined open science more broadly, as  “a 
collaborative culture enabled by technology that empowers the open sharing of 
data, information, and knowledge within the scientific community and the wider 
public to accelerate scientific research and understanding”. The focus area 
discussions often branched out beyond the technical sharing requirements into 
the collaborative cultural realms, which come into play in sometimes unexpected 
ways.

The following section lays out five key areas where concerted action within NASA 
SMD could achieve significant benefits in the incorporation of artificial intelligence/
machine learning (AI/ML) into the NASA SMD’s scientific process, both 
technically-oriented and culturally-oriented. Most of the areas are related to other 
areas, and in some cases sequencing is important. Although the initiatives need 
not be addressed serially, there are cases where progress in another area may be 
key to making progress in the one being considered. Suggested sequencing is 
laid out at the end.
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DIGGING DEEPER

Expand Sharing to Include Other Research-relevant Objects
Expand sharing beyond simply the input data to include other research-relevant 
objects such as:
1. labeled training and validation data;
2. ML models;
3. code;
4. workflows;
5. results; and
6. papers.

These should be categorized by the task being accomplished by the ML data and 
model. In addition, it is important to retain the relationships amongst these objects 
when sharing. The relationships should be both human- and machine-readable, 
via an API in the latter case. 

Benefits.  Sharing all aspects of a research project makes the results more 
reproducible and replicable. In addition, by beginning with working examples and 
modifying them, many scientists will be able to learn and understand state-of-
the-art practice for ML research. Machine-readability aids in reproducibility (and 
possibly inclusion in ensemble-based research).

Establish Standards, Conventions, and Best Practices for Managing AI/ML-
related Objects
NASA SMD or its constituent divisions should adopt (or where necessary, 
develop) standards, conventions and best practices for sharing the various 
research objects listed in the previous section. History shows that one of the most 
critically needed conventions is a system of unique resource identifiers. While 
this is straightforward for datasets and papers (digital object identifiers (DOI) 
are widespread for both), similar identifiers are needed for all research objects.
For most of the object types, format and metadata standards will be needed.  
Also, standards or conventions are needed to describe the relationships among 
resources, especially among resources of different types. While the above 
standards and conventions are not specific to AI/ML but rather open science 
as a whole, AI/ML also has a unique area where standards should be adopted, 
namely in the area of model success metrics which are currently a bewildering (to 
non-ML experts) array of recall, precision, F1-score, and more esoteric measures. 
However, rather than down-selecting, it may make sense to include as many as 
feasible in the standard, as the use case often determines which metric is most 
useful. 

In addition to success metrics, metrics for uncertainty and bias would also be 
useful. Note that the community may need to acquire some practical experience 
with the more novel research-object sharing before establishing a standard. 

Benefits.  Although standards and conventions take effort to adopt or define, 
their use improves the interoperability and interchangeability of components in a 

complex system such as the ecosystem of AI/ML components. Over time, this 
makes the development and adoption of innovations more feasible and cost-
effective. Meanwhile, common best practices help participants in the ecosystem 
to become more efficient and effective.

Develop Reusable AI/ML-relevant Data Management Tools
Once standards and conventions are established, it becomes feasible to develop 
reusable tools for managing and working with AI/ML-related research objects, 
such as datasets. This is typically more cost-effective when best practices, 
conventions, and standards are well established. Potential areas for reusable 
tools include:
• data repositories;
• data wrangling and conditioning tools;
• workflow tools; and
• portability frameworks (e.g. open neural network exchange-based tools).

Benefits.  Reusable tools enhance the efficiency of the entire community. 
However, even more important for open science, reusable off-the-shelf tools 
can make AI/ML-based research and applications accessible to a much wider 
community. They can also enhance collaboration among members of the 
community.

Begin/Accelerate Workforce Education and Training
Effectively sharing AI/ML-related research objects will require collaboration 
between the data management and AI/ML data scientist communities. In many 
cases, participation by domain scientists will also be beneficial, if not required 
(as is often the case with management of science data). However, in order for 
these three communities to collaborate, they must have a shared understanding 
of basic principles, both in data management and AI/ML. Thus, training in 
data management and domain science will be useful for AI/ML data scientists; 
training in AI/ML techniques will be useful for data management professionals. 
It is not essential for a practitioner in one field to attain the same level as their 
professional counterparts, but to at least understand basic principles well enough 
to communicate with their counterparts and understand where the main issues 
are likely to arise. Also, this need not be exorbitantly expensive: capacity building 
programs (such as ARSET) could be used for training in domain science, while the 
wealth of massive online open courses in AI/ML might be used for training data 
management practitioners in basic AI/ML.

Benefits.  Cross-training data management professionals and AI/ML data 
scientists both increases the skill levels in key areas for each group and enables 
more effective communication between members of the disciplines by providing 
a common language and basic understanding. The improved communication in 
turn enables better collaboration and fosters a more cooperative, inclusive culture 
in that one side no longer feels excluded by the technical jargon used by the other.
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Foster an Inclusive, Collaborative Culture in Both Data Management and AI/
ML Data Science Practitioners, Within and Across NASA SMD Programs
Effective sharing of AI/ML research objects, from datasets to models and code, 
to results and papers, will require collaborations between members of the data 
management and AI/ML data science community. The same inclusiveness that 
is vital for open science is also fundamental to developing the infrastructure and 
practices to enable open sharing of AI/ML artifacts. These collaborations require 
not only shared language (see above suggestion), but also shared open science 
values. NASA SMD leadership should strive to instill these values in the workforce, 
both employees and funded investigators. Communications of open science 
values should be clear, consistent, and continual across the spectrum of channels 
available to NASA’s SMD: scientific and general-audience articles, websites, 
outreach materials and events, and calls for proposals. In addition to explicit 
communications about open science and inclusiveness, implicit communications 
can also help, such as requiring or preferring research teams that include both AI/
ML data science and data management professionals.

Benefits.  Fostering an inclusive, collaborative culture among data management 
scientists, AI/ML scientists and domain scientists brings two distinct benefits. 
Firstly, it allows NASA SMD to leverage the cognitive diversity to be found among 
these groups. Secondly, methods and practices developed within NASA SMD 
to cultivate collaboration can often be more themselves utilized to support open 
science.

CONCLUSION

This is a pivotal time in the physical sciences. Tremendous increases in available 
science data are helping to drive the utilization of AI/ML methods that can be 
scaled out; those methods have evolved rapidly in the last decade with the rise 
of deep learning and available computer power, and open science has come to 
the fore as scientists seek to understand large, complex system-wide behavior, 
requiring more multidisciplinary collaboration. 

With its long history of openly sharing data and funding large science teams, 
NASA SMD is in a prime position to take advantage of this confluence. 
Cataloging and sharing AI-ready data and models identified several enabling 
steps that NASA SMD can take to help effect the adoption of open science and 
reap its many benefits:

1. expand sharing to include other research-relevant objects; 

2. establish standards, conventions, and best practices for managing AI/
ML-related objects; 

3. develop reusable AI/ML-relevant data management tools; and 

4. begin/accelerate workforce education and training. 

5. Foster an inclusive, collaborative culture in both data management 
and AI/ML data science practitioners, within and across NASA SMD 
programs. 

Several of these steps represent a shift in direction or emphasis from past 
practice and culture, and thus require both effort and intention in order to 
achieve.  However, the above steps are affordable and can mostly take place in 
manageable, incremental steps without disrupting budgets or timelines. They 
require only the decision to move forward.
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FOCUS AREA 6

COMPUTATIONAL 
PLATFORMS
What are the issues and approaches for training, sharing, and re-using 
AI data and models in the cloud and HEC? 

KEY CONCEPTS
High-end computing (HEC) refers to computing systems that employ large 
computational power (hundreds or thousands more than a traditional system). 
Cloud computing is the on-demand service that allows access to computer 
resources such as data storage or computing power without having to 
manage those resources. These tools have revolutionized what is possible by 
enabling the analysis and treatment of massive data from anywhere. However, 
to design efficient workflows with these tools necessitates co-locating the 
data and compute to enable the resources to iterate on models and ideas 
without time or cost concerns—a paradigm shift in the way we think about 
data archives. 

WHY DOES IT MATTER?
These tools can drive the next generation of science at NASA as they provide 
the capability of accelerating science and discovery, solving problems that 
cannot be solved in more traditional ways due to the large volume of data 
and processing power needed. Also, having a shared space for the data 
and making it fast to access this data effectively facilitates interdisciplinary 
science. 

IMPLICATIONS
Will seamless integration of tools, data, and compute accelerate progress?

Migration to the use of these platforms may both reduce the cost to allow 
for fast iterations and bolder, bigger scale ideas—potentially accelerating 
discoveries. Additionally, tactical availability of new platforms (e.g. 
Spacebourne or quantum) will help researchers open new frontiers to their 
investigations and build deeper engineering know-how. 

WHAT CONTRIBUTORS SAY

“The computing needs of some researchers are outpacing 
both the standard hardware and software.”

“I want to emphasize that science is science and science 
workflows are different from traditional workflows. Science 

is about trying things and doing them over and over and over 
again, and failing. Being able to bring new things into your 

problem, try things out, throw things away, do things over and 
over again, is something that we that we have to facilitate with 

our systems, and on the private systems we can control the 
cost there, because we’ve made up capital investment and 

operational investment, when you move to a cloud, sometimes 
the costs are a little bit harder to figure out, because if a 

scientist is trying something out and failing over and over and 
over in the cloud, they could get quite expensive.”

“There is some work being done on edge computing at this 
point to integrate pre-processing, or some processing on 

edge computers, and then plug that into the larger scale on 
premises or cloud computing capability. Edge computing is an 
interesting concept that should eventually be considered as 

some type of computational platform.”
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TECHNICAL MEMORANDUM: FOCUS AREA 6
COMPUTATIONAL PLATFORMS

Authors: Daniel Duffy, NASA Goddard Space Flight Center (GSFC)

EXECUTIVE SUMMARY

For decades, the use of information technology (IT) and high-performance 
computing (HPC) have been critical to the advancement of science and 
engineering. HPC has traditionally been leveraged by large-scale applications 
using massively parallel processing physics-based models to tackle research 
such as Earth-scale global circulation or the interaction between solar emissions 
and planetary magnetic fields. Over the past decade in the era of big data, artificial 
intelligence/machine learning (AI/ML) and commercial cloud computing, high-
end IT has become more accessible and is now critical to a much broader range 
of users than ever before. This, in turn, is spawning a new era of HPC and cloud 
computing using AI/ML to tackle problems never thought of before.

The purpose of the computational platform focus area was to identify key issues 
facing not only the more traditional HPC users but also the expanding usage of 
cloud computing across science and engineering. The goal of HPC and cloud 
computing is to enable innovation and accelerate science. To do this effectively, 
the challenges centered around using the current solutions need to be better 
understood and a discussion about how the future landscape may affect NASA 
SMD is necessary. Given that every researcher now uses IT in some way to do 
their work, this was an ideal forum in which to highlight challenges and suggest 
ways in which to overcome them.

Analysis of the discussions in this focus area identified the following actions for 
NASA SMD to take in order to maximize the potential for both HPC and cloud 
computing to meet NASA SMD’s mission requirements:

• lower the barrier to entry and expand access to HPC and the cloud by making 
access to these resources easier and quicker to obtain;

• balance resource utilization based on application requirement, either using 
on-premises HPC or cloud computing;

• create a collaborative, open science environment where NASA and non-
NASA colleagues can come together to accelerate discovery and innovation;

• expand the use of co-design bringing physical scientists, data scientists, and 
cyberinfrastructure experts together to co-design solutions;

• develop and publish more training data and trained models for AI/ML 
applications; and

• increase investments in outreach, education, and workforce development.
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PURPOSE AND GOALS

For decades, the use of IT and HPC have been critical to the advancement of 
science and engineering. HPC has traditionally been leveraged by large-scale 
applications using large parallel processing codes to tackle research such as 
Earth-scale global circulation or heliophysics models. Over the past decade in 
the era of big data, AI/ML, and cloud computing, high-end IT has become more 
accessible and is now critical to a much broader set of problems than ever before. 
This is spawning a new era of HPC and cloud computing by tackling problems 
never thought of before.

The purpose of this session was to identify key issues facing not only the 
more traditional HPC users but also the emerging usage of cloud computing 
across science and engineering. The goal of HPC and cloud computing is to 
enable innovation and accelerate science. To do this effectively, the challenges 
centered around using the current solutions need to be better understand, and a 
discussion about how the future landscape may affect NASA SMD is necessary. 
Given that every researcher now uses IT in some way to do their work, this was 
an ideal forum in which to highlight challenges and suggest ways in which to 
overcome them.

The subsequent discussions were divided up into multiple groups where 
each group was given three questions from the following list to guide their 
conversation.

Understanding the 
Problem

• Are you aware of use cases in which HEC or cloud computing has 
amplified impact? How did it make a difference? 

• What is the role of computational platforms in interdisciplinary sci-
ence? 

• What tools do you use for HPC? Is data co-location or choice of 
silicon an issue (CPU/GPU/TPU/QPU)? 

• What challenges have you encountered when working with the 
cloud or ‘on-prem’? How did either limit your project? 

• What challenges have you encountered when working with the 
cloud or ‘on-prem’? How did either limit your project?

Suggestions to 
Improve Things

• How could we make HPC affordable and accessible to the 
scientific community? 

• What are some ‘pro-tips’ when training models on the cloud (as 
trying and failing over and over is a large investment)? 

• If there is spare cloud or HPC resources available, how might that 
be communicated to the research community? 

• How is access to cloud/HPC resources managed? Could this be 
improved? 

• How can we better understand if HEC solutions improve 
researchers’ ability to get results?

Imagining a Future 
World

• Is centralized storage and analysis (e.g. the cloud) the future? What 
are the pros and cons? Where are we headed? 

• What computational platforms should NASA SMD invest in next? 

• How is the kind of science we want to do going to inform 
computational platforms of the future? 

• How is the kind of science we want to do going to inform the 
computational platforms of the future? 

• What are the big themes emerging that require us to rethink our 
computational platforms? 

• What should NASA SMD be doing to facilitate and advance more 
projects with HEC tools? Where will we be in 5 years? 10 years? 

• What is the future for computational platforms? What science might 
we see?
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KEY THEMES

The following key themes were identified in the conversations and will be 
addressed in the next sections.

1. Reducing the barrier to entry for HPC and cloud 

2. Storage and processor resource availability 

3. Usability 

4. Cloud adoption 

5. Collaboration 

6. Co-location of processing with data 

7. Education/training/outreach/workforce development 

8. Rethinking computational platforms and the future

 1 HPC in the cloud is becoming more accessible. Commercial cloud providers are providing high-speed networks and file 
system capabilities comparable to on-site resources.

KEY CHALLENGES

Reducing the Barrier to Entry for HPC and Cloud Computing 
Gaining access to NASA HPC and cloud computing resources is difficult and 
time consuming to the point where users look for alternative solutions. Users 
requesting access to resources must go through a bureaucracy of rules to 
request an allocation, obtain an account, get passwords, login to the systems, 
transfer data, and more. Even across the HEC program, gaining access is not a 
standardized process. Security requirements add an additional layer of rules and 
complexity on top of this resulting in a many step process that may take weeks to 
months to accomplish.

Once access is provided, users must understand how to efficiently utilize the 
system for their applications. HPC systems are rather fixed and slowly changing, 
resulting in users having to modify their workflows and applications to the 
HPC environment. This results in significant time spent on user requests for 
assistance in porting applications to the system, installing libraries, and testing 
their applications. On the complete opposite end, cloud computing has so many 
different possible configurations and options, it is difficult to know where to start. 
Many users in the cloud mimic what they do on NASA SMD resources resulting in 
a lift-and-shift approach that is not cost effective.

Resource Availability  
Even with the emergence of commercial cloud computing as a resource for NASA 
SMD science, there remains a need for on-premises HPC and storage resources 
built to enable global-scale or cosmological-scale simulations. Physics-based, 
tightly coupled, large-scale applications remain as a necessity to meet NASA 
SMD’s strategic science goals. These applications can require significant 
amount of dedicated compute, storage, and networking capabilities that may 
be too costly to obtain in the cloud and difficult to obtain in a timely manner1. 
However, the refresh cycle for on-premises resources can be very slow, while the 
commercial cloud capabilities are evolving much more quickly. The performance 
gap between private HPC resources and commercial cloud computing is closing 
quickly.

NASA SMD’s HPC resources are engineered and operated primarily in support 
of these large-scale applications. Priorities are given to the more computationally 
intensive over the data intensive applications. This has resulted in a growing 
imbalance of resources and not necessarily having adequate available resources 
for all applications. As a specific example, the HEC program is installing GPU 
systems that are primarily being used for AI/M but not to accelerate physics-
based applications. A better balance of resources to applications is needed.

Usability 
One of the key challenges identified is the move from local desktop computing 
resources into the HEC or cloud environments. In many cases, users develop on 
their local computing resources before moving to larger environments. If users 
are not familiar with the high-end capabilities, there are several issues that can 
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Collaboration 
The capability of working closely with other experts across and outside of the 
agency is an essential part of open science and critical to the success of NASA 
SMD’s mission. 

Primarily due to IT security requirements, NASA does not facilitate effective 
collaboration across virtual environments. Access to on-premises IT requires a 
NASA identity which can take weeks or months to establish, and when speed 
of research is essential, this can cause major disruptions and delays in funded 
research. The sharing of data can also be very difficult, especially when the data 
sets have become very large. Traditional ways of sharing data, such as FTP, have 
been deemed insecure and shut down causing more disruption to collaboration. 

Co-location of Data 
The co-location of data with other data and compute resources was widely 
recognized as a key to future success of NASA. There are activities that are 
moving in this direction and will take some time to get there. Currently, though, 
one of the challenges include co-locating multiple and disparate data sets. With 
the onset of AI/ML, larger and more diverse data sets are being brought together 
to train models and make predictions. The data is not federated across the HPC 
centers or clouds, and data exchange is difficult across these platforms.

The issue of data formats and ontological alignment was also mentioned as 
a challenge. For example, temperature in one data set may be measured in 
different units than in another data set. Consumers of the data must be alert 
to these differences and careful to take these issues into account. The lack of 
analysis ready data or AI/ML training sets is a significant shortcoming. Overall, 
researchers continue to spend significant amounts of their time co-locating data 
and converting data to more optimal formats. 

Education/Training/Outreach/Workforce Development 
This is seemingly a large category to consider, and there were many challenges 
identified in the workshop that cut across these categories. In many cases, it was 
clear that researchers do not even know what capabilities exist across NASA 
for HPC and cloud computing, which puts them at a disadvantage. The existing 
workforce is falling behind in certain areas, such as AI/ML, while the emerging 
workforce needs more NASA specific training. The convergence of science with 
IT in both HPC and cloud computing is not a common set of tools that comes 
from fresh graduates. These skills have to be grown and learned by practice over 
time.

The actual usage of HPC and cloud computing resources can also be very 
inefficient. Researchers are often scientists and engineers, but not necessarily 
computer scientists or experts in HPC or cloud computing. This results in 
selection of the wrong size resources, inefficient workflows, and inefficient 
applications all of which adds to the cost of execution.

cause inefficiencies and slow down science. As mentioned above, the inflexibility 
of a standard, shared HPC environment requires that users port and migrate their 
application and workflow to the system; the user interface is different and tools 
and libraries have incompatibilities. Different tools are used to understand file 
system performance, and the use of batch processing changes how to submit 
and manage jobs. Security is also a major limiting factor of the usability of the 
system and in enabling more opportunities for NASA collaborations with non-
NASA co-researchers.

As data sets have grown in duration and resolution and as data analysis grows to 
require more data, the inefficiencies of moving data into and out of computational 
resources (HPC or cloud) has become a limiting factor. Not only is it difficult to 
stage data into the HPC or cloud, but it is also important to understand how the 
data is stored near the compute resources. In other words, file system or object 
storage performance is important to understand to optimize the applications. In 
most cases, this is non-trivial and requires an understanding of the underlying 
hardware, which is often outside the scope of the scientist’s expertise. People 
should not have to be experts in HPC or cloud in order to effectively utilize those 
systems.

Cloud Adoption 
Commercial cloud computing has the potential to provide access to high-end 
computing resources without requiring access and credentials for on premises 
HPC resources. This solution can reduce the barriers to entry by providing a more 
collaborative environment to facilitate open science for both NASA and non-
NASA researchers. 

However, there are many challenges when trying to efficiently utilize commercial 
cloud computing that need to be addressed. These include the following:

• gaining access to cloud computing needs to be streamlined; 

• fully understanding the cost is a key factor in using cloud computing; on 
premises computing does not require funding from the researcher, whereas 
cloud computing does, and the concept of a project paying for the resources 
could limit science and development; 

• migration, start up, and efficient utilization of commercial cloud computing 
can be challenging for projects; clouds have such a wide variety of services, 
and it can be daunting for scientists to understand where to start and how to 
cost effectively use the cloud; 

• without taking a cloud-native approach to applications, a lift-and-shift 
approach to using cloud computing can end up being significantly more 
costly than on premises resources; and 

• there is a perception that there is not an advantage to using cloud computing 
for HPC or AI/ML, either in terms of cost or performance. 
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Rethinking Computational Platforms and the Future
What does the future of computing hold and how can NASA SMD leverage that 
to its advantage? This was recognized as a very difficult topic to discuss, as the 
future remains extremely fluid. There are not enough investments being made in 
the following: (1) update and modernize applications and codes, and (2) test out 
emerging platforms for potential use. As an example, most weather and climate 
models are written in Fortran, which very few if any recent graduates know. The 
lack of skills for this model of programming combined with the decrease in vendor 
support for this language puts applications at risk. That, combined with the 
emerging exascale platforms, also implies that significant code modernization of 
applications is needed. Funding is needed to upgrade or rehost these codes.

The IT hardware and software landscape is rapidly evolving, seemingly faster 
than ever before. The onset of AI/ML over the past few years has resulted from 
major investments by computing vendors and cloud providers. Prior to the rapid 
emergence of AI/ML, the big data explosion also resulted in major capability 
increases. These fast changes are extremely difficult to keep up with.

SUGGESTIONS TO IMPROVE COMPUTATION 
PLATFORMS

Reducing the Barrier to Entry for HPC and Cloud 
NASA cannot afford the time wasted in the current bureaucratic process; 
therefore, gaining access to HPC resources and cloud computing must be 
simplified and accelerated. While there is a recognition that a governance model 
is needed to ensure resources are allocated and used appropriately, the overall 
process should be simple, easy, and standardized.

Once access is provided, it should be much easier to get applications up and 
running. This can be obtained through a variety of mechanisms, including the 
following:

• expanding use and coordination of container technologies across the HPC 
environments, placing an emphasis on interoperability between systems2;

• providing easier methods to install libraries and code dependencies3;
• providing access to highly relevant data sets, including machine learning 

training sets;
• promoting the use of HPC and cloud through computational grants for 

smaller groups that may not be able to afford these resources;
• providing training and use case examples for how to efficiently utilize 

resources, either on premises or in the cloud, that are readily available and 
accessible to the users; and

• standardizing the interfaces across HPC and cloud computing to make 
moving between the systems easier for users4.

Resource Availability 
Many researchers continue to leverage the local desktop or laptop resources and 
need an easier path to migrate from local resources to the HPC environments 
or cloud. This could be addressed by providing a better balance of utilization 
between large-scale compute and data intensive applications. As data has grown 
exponentially and with the onset of more analytics-based AI/ML applications, 
data-intensive models are emerging which require massive amounts of compute 
and storage. The NASA HEC program must provide adequate and balanced 
resources for these requirements.

Computing architectures are changing rapidly, and the NASA HEC program must 
keep pace with these emerging system architectures. Recognizing the challenges 
of procurement, facilities, and integrations, a hybrid-approach is needed where 

2 Container technologies include Singularity (https://sylabs.io/singularity/) and Docker (https://www.docker.com/). In HPC 
environments, Singularity is preferred due to security considerations; however, in commercial clouds, Docker is more common. 
This makes the interoperability between on-premises HPC resources and commercial cloud computing more difficult. 

3One approach is to utilize capabilities like Spack (https://spack.io/) which allow the users to define their own modules that they 
can maintain on HPC and cloud systems. Rather than only have the HPC operations team install libraries, users would have the 
ability to do this themselves and share those libraries with others. 

4The use of a web-based approach like Jupyterlab (https://jupyter.org/) has the potential of providing users with a common 
interface between platforms. It further provides uses with an environment in which applications can be run and output data can 
be quickly analyzed and visualized.

https://sylabs.io/singularity/
https://www.docker.com/
https://spack.io/
https://jupyter.org/
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In addition to providing funding, additional support is needed to create cloud-
native solutions specifically designed for science applications. For most 
scientists, the transition from internal HPC or desktop computing to commercial 
cloud services is not a straightforward endeavor. Cloud-native implies that 
applications are utilizing native commercial cloud services, rather than re-
engineering these solutions by hand in the cloud. Examples of these services 
include relational databases, parallel clusters, load balancers, and much more. 
This implies that these services must be available for use and not limited by 
security concerns.

Cloud-native solutions should be built using the concept of infrastructure-as-code 
which is a process for creating and maintaining solutions through configuration 
and definition files; examples of this include CloudFormation Templates8 in 
AWS or a more general approach that has some portability across clouds using 
Teraform9. These templates should be stored within code repositories and shared 
across NASA.

In addition to sharing solutions, lessons learned should also be shared 
across different use cases. As an example, the use preemptable machines 
on commercial clouds (e.g. spot instances on AWS) and provide significant 
cost savings. The use of object storage in the cloud can provide additional 
cost savings but has limitations with respect to file system type access. 
Furthermore, the use of containers can greatly simplify the transition from on 
premises resources to the cloud, provided that the containerization services are 
compatible. In general, example use cases that have lessons learned applied 
should be made available.

Collaboration 
As mentioned before, the speed of access to NASA IT is critical to collaborative 
and competitive research. NASA SMD should invest in platforms, such as in the 
commercial cloud, that can facilitate open science with access to large data sets 
where the barriers to entry are extremely low. Can partnerships be set up with 
commercial cloud providers to better facilitate this capability?

Once these environments are established, data and models should be easy 
to access. While recognizing the need to maintain some level of privacy due 
to the competitive process of grants and writing papers, NASA should publish 
their data sets as soon as possible, including training data, trained models, and 
environments in which these models can be easily reproduced. 

NASA should also partner more with other agencies and universities to establish 
more cross-utilization of HPC and cloud resources. There are many HPC centers 
throughout the US with different capabilities that might be more appropriate to 
specific applications. These partnerships could accelerate science by maximizing 
the utilization of these resources.

there is easy access to both on-premises HPC and commercial cloud computing. 
Striking a balance between easy platform switches with well-tuned efficient use 
of the resources is a real challenge. Tools, libraries, interfaces, and data sets need 
to be similar enough to enable rapid migration between on-site HPC and cloud 
computing depending on the application requirements and project timelines. 
Validation of results on each of the different platforms is essential to establishing 
confidence in the results.

Usability 
 In many ways the HPC environments need to be more flexible and adapt more 
readily to the user requirements than they do currently. While the cloud is an 
extremely adaptable system (perhaps with too many choices), the current 
HPC systems are hard to change for the application. This includes the use of 
common interfaces from desktop to HPC to cloud that can adapt and modify to 
meet users’ needs5. Users need easier ways to modify the environment, install 
software, and get support from HPC and cloud experts. In many ways, a co-
design approach would benefit both the service providers and the science teams. 
Co-design, in this case, means having HPC and/or cloud experts side-by-side 
with the science teams to create HEC and storage solutions. This is not the typical 
approach where a set of requirements is listed and solutions are provided; rather 
this is an agile approach to creating usable and efficient solutions for science 
teams. This has been demonstrated to rapidly infuse an understanding of the new 
platform with some projects.

HPC and cloud must provide a balanced approach for large data volumes, both 
read and write. It is not sufficient to just co-locate data and compute if the data is 
stored inefficiently or is not in an analysis ready state (either hardware or software). 
There is also a need to recognize and support the different requirements for data 
storage and data management. Currently, the HPC and cloud solutions typically 
only provide storage solutions with very little data management capabilities; data 
management is then left up to the end user. More support is needed in this area, 
as is done at the observational data repositories, to not only control the growth 
of data but to fully harness the potential of the data. As with observational data, 
a review should be conducted before release of any files to ensure they are worth 
preserving and have sufficient metadata to be reusable.

A solution is also needed to create collaborative, open-science environments 
that enable both NASA and non-NASA researchers a place to innovate. The 
information technology security requirements inhibit access to NASA resources 
and data; a more balanced approach is needed which accounts for both security 
and data sharing.

Cloud Adoption 
As mentioned before, easier access to get into the cloud will encourage more 
adoption. To overcome the potential cost barrier, NASA should offer credits for 
commercial cloud computing to projects. This could be accomplished in several 
different ways: (1) partnerships with commercial cloud providers, (2) funding 
through various working groups across NASA6, or (3) support through the HEC 
program7.

5 See the footnote about Jupyterhub, web-based interfaces.
6The SDMWG AI/ML working group funded AI/ML projects to use cloud computing in FY21.
7Over the past year, the HEC program has been providing access to AWS commercial cloud for applications.

8 https://aws.amazon.com/cloudformation/resources/templates/ 

9https://www.terraform.io/

https://aws.amazon.com/cloudformation/resources/templates/
https://www.terraform.io/
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• domain specific languages, like Kokkos12 or GridTools13, to provide higher 
level programming frameworks that will make porting across different 
platforms much easier and make applications more maintainable;

• investments in augmenting physics-based models with trained model 
components that can run faster on smaller resources for specific applications; 
there will still be a need to run the large-scale physics-based models, but in 
many cases, trained model components may be more than adequate;

• how to effectively leverage the Internet of Things (IoT); smart cities are 
emerging as major sources of data, and NASA applications should leverage 
this data;

• edge computing is a capability that is common, but more work needs to be 
done as to how to effectively deploy and integrate this for NASA missions, 
including autonomous missions;

• neuromorphic platforms, which are systems designed to accelerate AI/ML 
training and inference and are modeled after the human brain; and

• quantum computing, which still may be a decade away from real world 
applications, but investments need to be made now to understand how this 
could be leveraged.

CONCLUSIONS AND NEXT STEPS

The future success of NASA’s mission needs HPC and cloud computing to 
address the next generation questions and to design, build, and launch remote 
sensing platforms for the future. Science and engineering are more tightly coupled 
to IT than ever before, and therefore, NASA must make these capabilities easier to 
access and use. To simplify the diverse comments from above, the following are a 
set of next steps for NASA to consider:

• lower the barrier to entry and expand access to HPC and the cloud by making 
access to resources easier and quicker to obtain;

• balance resource utilization based on application requirement, either using 
on-premises HPC or cloud computing;

• create a collaborative, open-science environment where NASA and non-
NASA colleagues can come together to accelerate innovation;

• bring domain scientists, data scientists, and cyberinfrastructure experts 
together to co-design solutions;

• develop and publish more labeled raining data and trained models for AI/ML 
applications; and

• increase investments in outreach, education, and workforce development.

By taking the above steps and acknowledging issues with HPC and cloud 
computing, science and engineering can be greatly accelerated. At the 
convergence of high-end information technology and science, NASA is driving 
the future understanding of our world and universe.

Co-location of Data 
Better tools and faster access are generally needed even when data are co-
located; this includes better search functions, ontological alignment tools, meta-
analysis of what data is of most interest or common across a community, and 
easier data migration tools. Overall data management is a major challenge, and 
even though this is being addressed for the Earth observation data, scientists are 
left managing their own data with rudimentary tools. Tools to assist researchers 
in moving data between platforms and migrating data sets into analysis ready 
formats, such as Zarr10, would greatly benefit the end user.

NASA is currently co-locating Earth observation data into AWS, and there is a 
danger of being locked into a single commercial cloud. It was recognized that 
NASA is looking at this and the suggestion is to have data stored and federated 
across multiple clouds vendors.

Education/Training/Outreach/Workforce Development 
Outreach and training were highlighted as key investments that could greatly 
benefit the research community. Starting with outreach across NASA to educate 
the existing workforce on the capabilities available to them would go a long way. A 
comprehensive training program that would continue to invest in the development 
of the workforce is also needed11. It should also be recognized that these training 
programs need to evolve as new capabilities, languages, and environments 
become available. They should be delivered in a professional and stimulating way.

In addition to more training, documentation, and representative use cases, NASA 
SMD could make a call to seed applications in HPC and cloud computing. This 
could be an investment in short term projects where domain science researchers 
are coupled with experts in cyberinfrastructure and data science with funding 
to cover labor and for the compute and storage resources. The goal of these 
projects would be to provide a foundation for these applications to efficiently scale 
to tackle the next generation problems for NASA SMD.

More partnerships with universities, colleges, and even K-12 school systems 
could be made to introduce students to NASA relevant data and analysis as soon 
as possible. Investments in bootcamps, hackathons, and fellowship programs 
to develop the next generation workforce were also suggested. This also aids in 
recruiting talented and motivated individuals.

Rethinking Computational Platforms and the Future 
Overall support for NASA researchers to keep more up to date with emerging 
technologies and providing them support to evolve their applications and models 
is critical. Moreover, NASA needs to invest in a better understanding of the 
following:

• the climate and environmental impact of the compute and storage 
requirements being used across NASA; we do not want to affect the climate 
by studying the climate; 

10 https://zarr.readthedocs.io/en/stable/
11 As an example, the NASA Center for Climate Simulation (NCCS-Code 606.2) at Goddard provides a series of python training 
sessions which also includes AI/ML capabilities.

12 https://kokkos.org/
13 https://gridtools.github.io/gridtools/latest/index.html

https://zarr.readthedocs.io/en/stable/
https://kokkos.org/
https://gridtools.github.io/gridtools/latest/index.html
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FOCUS AREA 7

CROSS DIVISIONAL 
PROJECTS
Cross-divisional science’s time has come. Why does it matter? What are 
the barriers? What are the universal challenges? 

KEY CONCEPTS
Cross-divisional science can be sharing methodologies, techniques, 
datasets, and tools across different divisions. It also refers to the collaboration 
of researchers from different backgrounds to investigate a common challenge 
that sits between the demarcation lines between divisions. Machine learning 
is particularly suited to interdisciplinary science due to its ability to extract 
insights from multiple datasets.   

WHY DOES IT MATTER?  
It is often observed that the most impactful scientific and research progress 
occur at the intersection of domains. Examining both the benefits of 
and the barriers to cross-divisional science is vitally important to NASA 
and other agencies with multiple research domains, potentially reducing 
redundancies across the different divisions and encouraging exploration of 
phenomenologies that are outside traditional domains—or problems that 
require skills from multiple areas of expertise.   

IMPLICATIONS
Can ML-enabled cross-divisional projects be a way to unlock new science 
questions and outcomes?

The way we do research is sometimes conditioned to our heritage and 
certain inertia from our area. Researchers from different backgrounds coming 
together can shine new light on problems by breaking away from traditional 
approaches. Specifically for AI, having ML experts work together with domain 
experts can help push the frontiers of what we thought was possible. 

WHAT CONTRIBUTORS SAY

“JPL is putting in some internal resources to take data from 
the planetary data system, imaging data of Jupiter and using 
it as a backdrop for trying to look for exoplanets and so forth. 
We can use our own solar system as a baseline for being able 

to then do exploration of industry astronomy data sets and 
you can begin to define some similarities. This just begins 
to connect to archives, but then, you know, you’ve got all 

the work to figure out how to put that data together in a way 
that you can start to create a more integrated data set for 

exploration.”

“A lot of times people begin to think you can just use the exact 
same software tool or something like that and some of the 

words we use often as “methodology transfer”, in particular, 
to say that sometimes what you’re doing is looking at how to 

share or purchase things as a common methodology and how 
that translates into, to physical software, systems, algorithms, 
things like that depends on the problem space. But if we begin 
to recognize the fact that what you’re trying to do is look at how 

to come together and collaborate and take lessons learned. 
That’s an opportunity to also look at reducing redundancy.”
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TECHNICAL MEMORANDUM: FOCUS AREA 7  
CROSS-DIVISIONAL PROJECTS

Authors: Srija Chakraborty, NASA Goddard Space Flight Center, USRA

INTRODUCTION

The spectrum of data collected by NASA science missions and NASA Science 
Mission Directorate (SMD) areas (Earth Science, Planetary Science, Heliophysics, 
Astrophysics, Biological and Physical Sciences) span diverse areas capturing 
unique phenomena across each discipline. While reducing, analyzing, and 
extracting meaningful information across these areas distills out novel information 
specific to a domain, the process of information extraction and data analysis 
methods to aid and accelerate science analysis often share similarities across 
disciplines. Leveraging machine learning (ML) approaches are often ideally suited 
to facilitate this information extraction process due to the large dataset volumes, 
complexities of patterns, spatio-temporal heterogeneity, and data sparsity 
observed across these science areas.  This focus area reflects on the challenges 
and opportunities in enabling transferability of ML methods including generic 
approaches, code, workflow, and software stack across divisions and disciplines 
while adhering to domain-specific constraints and are referred to as cross-
divisional approaches.
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DIGGING DEEPER

Cross-divisional approaches are applicable at varying stages of the data 
processing pipeline ranging from onboard analysis for improving downlinking 
to ground-based approaches focused on retrieval algorithms and noise 
reduction, followed by analyses of higher level products including classification, 
segmentation, modeling, superresolution, anomaly detection, time-series 
analysis, forecasting, creating knowledge bases for information retrieval, and 
question answering, to name a few. Ultimately, this transfer of ML capabilities 
is crucial in the process of accelerating data analysis and discovery, tackling 
tasks that are otherwise infeasible even by domain experts and building off of 
success stories from diverse science disciplines, while avoiding already explored 
strategies that result in known failures. Moreover, such approaches can also help 
bring in novel perspectives that are not usually explored by a given discipline 
leading to further contributions.
 
Facilitating and advocating for interdisciplinary research lies at the core of utilizing 
cross-divisional ML approaches across domains. There are six key challenges in 
designing and adopting this principle.
 
1. Determining interdisciplinary overlap: A barrier to adopting cross-

divisional approaches can arise from the task of determining areas that 
share commonalities. Determining this interdisciplinary overlap can often be 
challenging, particularly for areas that have not exchanged ideas traditionally 
and could result in missed opportunities of collaboration with appropriate 
disciplines. 

2. Disconnected terminologies: This refers to the challenge of exchanging 
ideas and ML approaches that are related across divisions, but seem 
disconnected due to the use of domain specific terminologies, which may 
also create a further barrier to interdisciplinary collaboration. For example, 
analyzing light curves (astronomy) can benefit from the broad class of time-
series approaches, which is a generic terminology applicable across a large 
array of disciplines. 

3. Search, retrieval and efficacy: A further challenge that may arise after 
determining overlapping areas and potential ML approaches is searching 
through the ever-increasing volume of scientific literature to be informed 
about the state-of-art practices to best address a given research question. 
This can be further compounded by the fact that ML contributions are very 
often reported on real-world datasets that may not share the same challenges 
as Earth and space science observations, namely, spatio-temporal 
heterogeneity, data sparsity, high dimensionality, need for fusing observations 
from multiple modalities for comprehensive insight into a process, barriers 
to easy crowd-sourcing for labeling large data volumes due to the need for 
domain specific knowledge, and scenarios relating to unknown unknowns 
in areas such as planetary exploration, any of which may render the direct 
application of ML methods less effective. In such cases, additional steps are 
necessary to tailor an ML approach for a specific Earth and space science 
dataset or research question.

4. Data, sharing, implementation and easy translation: Although a solution 
to address the previous problem would be to encourage the development 
of generic ML methodologies that can be fine-tuned to the problem at 
hand, adoption of ML approaches across NASA SMD is still limited by data, 
metadata, workflow (including preprocessing steps), labels, and code 
sharing practices due to lack of awareness, guidelines or standards, and 
infrastructure access due to policies. Reproducibility of the environment and 
software stack can give rise to conflicts that may also discourage the reuse 
of even openly available ML implementations. Additionally, a vital requirement 
for prototyping ML algorithms is the availability of cleaned and correctly 
preprocessed data.  

5. Cultural barriers: Incorporating ML methodologies and interdisciplinary 
paradigms into any Earth and space science framework often requires 
cultural shifts from the traditional approach of seeking a more within-domain 
exploration philosophy. Furthermore, skepticism over ML approaches is 
also rooted in a black box perspective of ML and deep learning methods 
that is viewed as a hindrance by scientists to gaining insight into a process 
of interest. On the other hand, domain scientists interested in incorporating 
ML approaches may find it challenging to find skilled and interested ML 
practitioners or experts to collaborate with, which may also be a barrier in 
supporting cross-divisional projects. 

6. Practicalities: Finally, lack of funding, solicitations, and encouragement 
to explore ML methodologies is a very significant gap on the pathway to 
facilitating interdisciplinary projects that can be bridged by ML.
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IMPLICATIONS

The workshop identified several solutions that could potentially address these 
challenges and support ML-based interdisciplinary collaborations. These are 
listed below:
 
1. Identify common themes in science questions: Determining the 

commonalities in research questions across domains is expected to highlight 
the natural synergies that stand to benefit from ML-based approaches. This 
requires an aggregation of experts from both science and ML areas to identify 
the overarching themes and then explore potential AI/ML solutions to tackle 
these questions. 

2. Working groups and AI/ML workshops for NASA science: Working 
groups and workshops aiming to highlight AI/ML research for NASA science 
are expected to underline common approaches that can be exchanged 
across diverse areas while fostering collaborations. Additionally, setting up 
affinity groups can be useful to further dive into domain-specific challenges 
while adopting an ML based workflow. Conducting Earth and space 
workshops at broader ML conferences can be a venue to forge external 
collaborations and to be informed of generic ML advances. 

3. Breaking down language barriers: A significant effort needs to be put into 
revisiting the terminologies in these domains to ensure that ML approaches 
for overlapping data format or science themes across divisions are identified 
to support the exchange and flow of ideas. 

4. Improved searching capabilities for visibility of methods, collaborators: 
A common repository that indexes AI/ML approaches, advances, projects, 
and papers across NASA science divisions can be a useful tool to explore 
potential methodologies and to identify collaborators. Such repositories 
should be supported with search interfaces that are flexible to retrieve ML-
based advances in a given domain (e.g. AI/ML use in heliophysics) as well 
as solutions to a given class of ML problems (e.g. current projects exploring 
low shot learning, forecasting) that may be applicable across several science 
areas. 

5. Open sharing practices and platforms: Hosting NASA repositories that 
share data code, metadata, workflow, and strategies to allow easy replication 
of the environment is crucial to encourage ML use in NASA science. While 
domain scientists should play a crucial role in guiding science question 
formulation (suggesting constraints, labeling, and validating) ML practitioners 
should adopt reproducible workflows, open data, and code sharing policies, 
as well as diversify the ML pipeline to handle different data formats and 
interactively initialize the pipeline for a new dataset. In addition, domain-
guided models (wherever applicable) and interpretability methods should be 
given emphasis to explain ML outcomes and increase scientists’ trust in AI/
ML.

6. Funding and cultural shifts: Designing solicitations that explore AI/ML 
approaches are essential for encouraging scientists to collaborate with ML 
experts and create interdisciplinary research teams. This process should 
include both domain scientists as well as ML experts and jointly create 
solicitations (whenever possible) across related disciplines. Solicitations that 
encourage the use of ML in a given science area, across a mission, as well as 
to explore transferability across domains for benchmarking, labeling should 
be more mainstream to increase AI/ML use. Providing high performance 
computing resources to researchers, irrespective of funding, is also a vital 
step to conduct pilot studies, design proposals, as well as complete an ML-
based research task successfully.  Finally, special issue publications for AI/
ML, venues soliciting important negative results should also be emphasized 
to track both success and failure stories and share the lessons learned.

CONCLUSION

AI/ML approaches have a vital role to play in accelerating analysis and discovery 
across NASA science areas with a cross-disciplinary approach supporting the 
exchange of ideas and novel perspectives, reuse of code, workflow, and sharing 
computational resources. This session identified technical, cultural, and practical 
gaps in realizing such a paradigm, as well as several strategies to adopt to enable 
successful cross-divisional projects across NASA science areas in the future.
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FOCUS AREA 8

ADAPTING TOOLS AND 
METHODS ACROSS DOMAINS

What are the ideals and realities of cross-domain adaptation? 

KEY CONCEPTS
Regardless of the application, machine learning workflows can include 
generic machine learning tools (such as data loaders, MLOps or 
implementations of certain algorithms). These generic tools can be modified 
and repurposed for different applications. Similarly, curated datasets used in 
other areas could be the starting point for a different investigation.

WHY DOES IT MATTER? 
Understanding commonalities across data and use cases can be key to 
reducing duplication and leveraging existing workflows, tools, methods, and 
datasets. Sharing methodologies will also build an understanding of the tools 
and catalyze trust within the community.

IMPLICATIONS
Could existing workflows from other areas help crack our open problems?

Encouraging these synergies may increase re-use, leverage capacity across 
the community, and increase the viability and feasibility of approaches. In this 
way, NASA data will be better leveraged to gain new insights. 

WHAT CONTRIBUTORS SAY

“I think more important is the difference in the users in the way 
in astronomy, astronomers are used to working with, with data, 

versus the way atmospheric scientists or other members of 
the science community might be used to working with data is 
actually quite different. Meeting users where they are is really 

important and the way we build up the systems has to start 
with the users.”

“(We need to) bring all domains to the same 
level of ML science and use”

“I think part of this theme of adapting tools and methods 
across domains is oftentimes getting some scientists in some 

domains to understand how to trust and understand how to use 
modern ML methods.”
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TECHNICAL MEMORANDUM: FOCUS AREA 8
ADAPTING TOOLS AND 

METHODS ACROSS DOMAINS

Authors: Jeffrey C. Smith, SETI Institute, Mountain View, CA
Amitava Bhattacharjee, Princeton University

EXECUTIVE SUMMARY

NASA SMD recognizes the benefits of adapting tools and methods in machine 
learning (ML) across multiple domains. Points raised at the 2021 NASA SMD AI 
Workshop include:
• investments made in code development build on each other to enhance not 

duplicate;
• tools that are evaluated and used by multiple parties have better quality, elicit 

stronger confidence in their validity, and have more accurately described 
capabilities;

• re-use or modification of existing code accelerates the time to science; and
• publication of robust, flexible, and validated re-usable code makes NASA 

intellectual property available for broader use.

The study groups at the NASA SMD AI Workshop identified and discussed 
actions needed to successfully share tools and methods across the entire 
range of programs and research. Some discussion overlapped with focus 
area 5, cataloging and charing AI-ready data. NASA SMD needs to create an 
environment that encourages and supports the re-use of software, trained 
models, and labeled training data within and across the entire Mission Directorate. 
As the use of ML expands, it is expected this will extend into trained models. 
Three lines of advance are needed: (1) help developers create re-usable code, (2) 
help end users identify, evaluate, and adopt other’s code, and (3) create a cultural 
environment that encourages points 1 and 2.

Improvements to the development and publication process involve:
• replacing NASA’s software release approach with a more flexible and faster 

approval;
• a consolidated publication service with a trained staff providing easily 

maintained metadata to make it easy to select among re-usable software; 
• funding the extension of selected codes to new domains;
• preparing clear documentation at an appropriate depth; and
• sharing lessons learned from all software development, including what did 

not work.
Improvements to the user/consumer include:
• a catalog to help find and evaluate re-usable tools;
• encouraging cross-domain participation in projects for fresh perspective; and
• providing incentives to re-use rather than re-invent tools.
Improvements to the cultural environment include:
• funding education, training, hiring and promotion of developers and 

scientists;
• encouraging outsider participation;
• assigning a data concierge to each repository who understands the data; and
• raising community awareness of available tools and capabilities.
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PURPOSE AND GOALS

NASA provides significant intellectual investment in the development of software.  
This is growing in software involved with ML. These may be completely new 
algorithms manifested in research papers, documentation, and code. They may 
be trained forecast models using common or unique codes, or they may be 
the labeled training data used to train models. Experience to date has shown 
the value of re-using software in the form of open-source and commercial tools 
and libraries such as PyTorch, scikit-learn, Tensorflow, Keros and Sagemaker. 
This accelerates the time to discovery as well as allows scientists with less ML 
experience to take advantage of these tools, similar to the way they use statistics 
without having to derive their own techniques.  However, building on someone 
else’s work to advance your own requires that work to be trustworthy and 
transparent to scrutiny. Thus, generic implementations of convolutional neural 
nets (CNN) or long short-term memory networks (LSTM) in a validated tool such 
as Sagemaker can reduce the threshold to entry and allow attention to be applied 
to the new problem.

Regardless of the application, ML workflows can also include generic ML support 
tools (such as data loaders, MLOPS, or implementations of certain algorithms). 
These generic tools can be modified and repurposed for different applications. 
Similarly, curated labeled sample datasets used in one investigation could be the 
starting point for a different investigation.

Understanding commonalities across data and use cases can be key to reducing 
duplication and leveraging existing workflows, tools, methods, and datasets. 
Sharing methodologies will also build an understanding of the tools and catalyze 
trust within the community.

NASA SMD’s purpose of looking for opportunities and technologies to adapt tools 
and methods across domains is to move more quickly up the learning curve. By 
expanding the use of related tools across domains we expect to reduce the costs 
and accelerate the process of maturing them both in adding functionality and in 
validating them. Tools are essential to the discovery and understanding of natural 
phenomena and physical processes. Having multiple viewpoints examining a 
problem is likely to yield results faster and with higher quality. Validation of the 
tool’s reliability and the quality of the results improves the confidence in the tool. 
This collaboration also helps to identify the boundary conditions beyond which it 
is invalid.

NASA SMD has four goals in advancing the work against this problem:
1. making NASA intellectual property available for wider use;
2. creating a community work environment which encourages and aids the 

development of tools and methods that can be used across the full range of 
NASA SMD;

3. identifing lessons learned from past successful re-use of workflows, tools, 
methods, and datasets and to apply them to future work so as to improve 
re-usability; and

4. avoiding investment in redundant development of new code when the 
effort could be applied towards improving and validating an existing code 
performing the desired function.

SUMMARY OF FOCUS AREA 8 DISCUSSIONS

Understanding the Problem
There are a wide range of sources of reusable ML tools and very few sources 
of re-usable training data. The fact that commercial tools exist and can be 
purchased is demonstration of the demand for this. There are a wide range of 
open-source tools in wide use. Lessons can be learned from the way this is done.

NASA researchers may develop a new algorithm and translate it into code for their 
specific project, but it often continues to be usable only within the context of the 
specific problem for which it was developed. Frequently, papers are published 
to describe the science result and only briefly touch on the algorithm or tool 
developed. Currently, a number of obstacles exist to sharing this code outside the 
project itself:
• consider whether the emphasis should be on protocol or a software 

framework; and
• the NASA software release process adds to the labor burden of sharing as 

well as the delay and cost.

Researchers should always be cognizant that others could use their tools, 
provided they are designed in a way to enable re-usability. Doing so might just 
provide the most impactful legacy of their research. There are a number of 
benefits to developing ML algorithms and codes that can be re-used that are not 
being realized:
1. reducing the amount of funding for duplicated work and instead invest it in 

enhancements and improvements built on existing software and datasets 
accelerating the subsequent times;

2. repeating the application of tools and training datasets allows multiple points 
of view to examine software and training data for defects and biases; and

3. software that has been validated and qualified by multiple parties improves 
the confidence that it can be re-used:

 a. produce what it is designed to do; and
 b. calibrates the accuracy of the claims of the developer/users.

Some key questions that help dictate how to take advantage of 
opportunities:
1. when to use commercial software instead of developing your own; and
2. how to justify building extensions to leverage commercial software instead 

of developing a competing, open-source standalone tool with a much higher 
investment and demand on validation.

Jargon conflict can isolate domains. How can this be mitigated? When should 
we strive to use common terminology and nomenclature to help facilitate the 
exchange of information? There already are interdisciplinary talks and workshops, 
but do we fully utilize the opportunities to tear down communication barriers?
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SUGGESTIONS FOR IMPROVEMENTS

Three general categories of improvements can be made: 
1. improvements to the creation of re-usable software and datasets;
2. improvements to access and availability of re-usable software and datasets; 

and
3. improvements to the culture and community environment.

Improvements to the creation of re-usable software and datasets are the things 
on the publication side of the equation:
• collecting a catalog annually of software developed and assessment of ability 

to re-use it;
• funding dedicated support to codes that are competitively selected as most 

valuable to share; and
• performing continuous integration of the tools and labeled training datasets 

as the instrument evolves.

Improvements to access and availability of re-usable software and datasets 
involves investments infrastructure to help projects identify, adopt and make 
contributions to the software and datasets.

Improvements to the culture involve investments of funding or attention made 
in the community environment to give re-use more attention and make some 
aspects of it more acceptable. Some of these changes reflect discussion in the 
breakout groups identifying trustworthiness of other researchers work. They are 
also essential for the support of open science: 
• it’s okay to fail, as long as you can describe lessons learned;
• it’s okay to re-use someone else’s work, with credit;
• publish reports on experiences and lessons learned;
• credit researchers for non-publication contributions, both at universities and 

at NASA, particularly in tenure consideration and performance plans;
• create a mechanism for reducing the language barrier and translating among 

science and technology domains;
• include lessons learned in mission annual reports and continuation reviews;
• increase the opportunities for formal training in domain science by the data 

scientists and vice versa;
• recognize that agility is often required in the face of adherence to a plan; and
• encourage attendance at conferences where this is discussed such as 

pyData, pyAstro.

Another way to convert the current NASA SMD culture to one encouraging 
developing tools for use across domains is to find commonalities among the five 
Divisions:
• reduce the language barrier by creating a dictionary of synonyms or glossary;
• provide formal training in domain and data science;
• look for practical applications and experiments as well as the theory/

abstractions;
• create opportunities for participation by outsiders to broaden their 

perspective;

• pitch a difficult problem in one domain to experts in other fields and ask how 
they would solve it; and

• create funding opportunities to stimulate collaboration across domains 
and among scientists and engineers and among universities and federal 
laboratories.

Similarly, significant impact on the culture can be had by making investments in 
infrastructure:
• platforms to make re-use possible: 

 -  a repository or at least catalog of labeled training data, standards, and 
mechanisms for automation; and 
 -  access to support resources, including documentation, FAQ, and 
additional support;

• for each data source, invest in a data concierge (similar to the DAAC scientist 
role) who understands the data, not just the file format;

• raise community awareness of the infrastructure for sharing and collaboration 
as well as the visibility of codes available for re-use; and

• a unified, official github with full support to encourage migration from the 
various githubs and limit them to short term use with migration onto the 
unified site for re-usable code. 

Considerable discussion revolved around different approaches to creating data 
science frameworks instead of relying more loosely on a protocol approach. 
Protocols may be too weak and frameworks maybe too rigid. Since something 
more in the middle ground may require a framework be constructed as the basis 
for re-use but making it flexible and generalized enough to be re-used for different 
domains. As there was no winning notion selected, this would be an important 
topic for further discussion.

Lastly, improvements to the culture require improvements to the status of the 
workforce. Demonstrate the value of sharing tools across domains by making 
this a feature of hiring and performance plans and tenure offers. Expand existing 
fellowships such as the Lasker (STSci), Simons (CCA) and other Frontier 
Development Lab (FDL)-centric post-docs. Create pilot projects, internships, 
and support early career accelerators like FDL and DEVELOP with multi-domain 
collaborations. Create more training and summer school programs like JPL’s and 
the Heliophysics Summer School.

Imagining a Future World
The end state desired by the NASA SMD community is one that enables the 
release and sharing of high quality, validated, and credible algorithms, codes, 
tools, models, and labeled training data.  

From the developer’s point of view, there needs to clear criteria for fast-tracking 
software release. There is a process for selecting and funding software validation 
and qualification that is comparable to that used in the commercial sector with 
dedication to completing it. One criterion should be an independent assessment 
as to its re-usability. Documentation of sufficient quality should be available 
to help understand its limitations and how to use it. Projects should require all 
participants to agree to some software release license at the beginning.
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From a user’s point of view, there should be a point of entry to search for, identify, 
and select among software packages and tools that can be re-used. This would 
include those which only work with commercial environments, clearly identifying 
their limitations and carry with it the past validation as well as notes about 
enhancements or extensions that are needed. 

The community perpetuates itself in support of open science by sharing more 
broadly than today. It would be easy to find the tools you need, if they exist, and 
modify them to fit your investigation. 

KEY THEMES IN ADAPTING TOOLS AND METHODS ACROSS DOMAINS

The study groups generally settled on several key themes to creating the culture 
change require to enable tool re-use. First, NASA is not on the cutting edge of tool 
development and re-use and to be so will require fundamental changes to the 
most important features of NASA SMD business practices in order to provide the 
motivation and to demonstrate management seriousness, specifically:
• criteria for selecting projects for funding;
• dedication of resources to supporting maintenance and modification of 

codes for re-usability; and
• transform software development in NASA SMD from an artisan to industrial 

process.

KEY CHALLENGES IN ADAPTING TOOLS AND METHODS ACROSS 
DOMAINS

Without focus, attention, and funding, there is no means to adapt tools and 
methods to work across domains except good will.  Encouragement and 
motivation require a commitment to hiring people with the skills, including it in the 
performance or tenure-track plans and rewarding their achievements.
The black-box problem is of particular concern with re-using software, 
whether open source or commercial; while many sources provide adequate 
documentation to run the code, the details of the algorithm being implemented 
may be proprietary or obscured. Also, it should be expected that solutions do not 
work well out of the box for very specific tasks and require extensive validation 
and verification. Moreover, years later an investment in a particular solution may 
result in thinking about the problem in a certain way, which resists more modern 
or emerging techniques. Some open source software, such as various Apache 
tools, have a robust maintenance model but rely on contributed effort from the 
community. Similarly some commercial software companies plow profits back 
into the improvement of the code and can advance much faster with professional 
and continuous attention; other companies do less well. 

The NASA management systems do not encourage cross-domain work and code 
re-use. Funding is available for missions and for science research grants, but it 
is difficult to augment or supplement those funds to adapt tools and methods for 

use outside the project. Little funding is made available to maintain key codes 
after the completion of the project.  

The availability of trained software engineers and data scientists who can help 
the domain scientists create tools and implemented methods across domains is 
extremely limited. NASA SMD will need to grow their own. 

The NASA cultural environment has created a highly competitive environment for 
funding, which tends to reduce the opportunities to find collaboratively-minded 
individuals and teams. Additionally, the way NASA funds projects within each 
SMD division makes multi-domain funding opportunities difficult.

Suggestions to Improve Adapting Tools and Methods Across Domains

1. Develop a roadmap for successfully creating an open-source shared software 
environment. Start with a review of commercial practices to identify success 
factors and manifest them in the development of a guidebook for successfully 
sharing software including a roadmap of the considerations at various 
stages. This roadmap for portability would encourage the use of existing 
or modification of existing software, preferably open-source software, but 
not exclude the re-use of commercial software when it makes sense. Only 
if existing software is unworkable would the choice be to develop new 
software. 

2. Develop a process and allocate funding to examine software projects for 
funding of extension into re-use and code maintenance and support. 

3. Work with standards bodies, like OGC, to develop standards for acceptable 
codes and labeled training datasets for re-use. The same concern relates to 
the data and models, both of which also need to be freely accessible when 
possible and standardization of data formats would be desirable. There are 
obstacles to this standardization, not the least being academics tend to be 
quite independent and prefer using their own standards. When do we accept 
data format differences and when do we impose a universal format? Could 
some aspects of the data be standardized but still allow freedom for the 
researcher to prepare the data most conducively to their project?

CONCLUSION AND NEXT STEPS

With significant culture change, it is possible for NASA SMD to achieve its goals in 
adapting tools and methods for re-use across domains. A comprehensive plan, 
integrated with other suggestions from the NASA SMD AI Workshop and the 
NASA SMD survey, is needed to guide investments and changes to infrastructure 
and business practices. Without appropriate resources and management 
encouragement, it will be impossible to make the changes required.
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FOCUS AREA 9

PRACTITIONERS CHECKLIST 
AND AI ETHICS

What do good AI ethics look like in data science, from a practitioner’s 
perspective and what do we mean by AI ethics? 

KEY CONCEPTS
In previous sessions, we have discussed AI readiness, uncertainty, 
reproducibility, and many important aspects of AI. As this workshop comes to 
an end, can we develop a checklist for AI for science? In this final session, we 
also want to reflect on what AI ethics means and the role it should play in our 
research. Ethics is the set of values and standards that guide our conduct and 
the development of technologies but it has not been specifically defined for AI. 

WHY DOES IT MATTER? 
The application of AI research can be used for purposes that have a large 
impact such as informing science policy decisions, monitoring conservation, 
and human actions. Therefore, as more of our decisions and scientific results 
are based on AI it is important that we ensure the validity and veracity of our 
results and that we come together as a community to define what ethics 
means for AI and how to implement it.

IMPLICATIONS
Can we develop a checklist for ethical practice for AI and science?

Building understanding and awareness about good ML practices will avoid 
the publication of unverified or biased results, which slow the adoption of 
AI. Further, evaluating the ethics of our research will ensure its quality and 
integrity. The adoption of guidelines to improve the neutrality, transparency, 
and explainability of AI will be key to achieve these goals. As a result, we will 
also boost our understanding of our models and make AI trustworthy and 
reliable.

WHAT CONTRIBUTORS SAY

“There is no such thing as a ‘black box.’  
Methods to explain and interpret results should be an essential 

part of any AI project.”

“The hope would be that the different disciplines could mostly 
get something that’s systematic, but then where there does 

need to be fine tuning so it’d be more practicable.” 

“Calling out subtleties.”

“Ethical AI means that you have really brought in a broader 
context, from what you’re doing, you’re committed to 

understanding not just what the data says, but you’re also 
committed to understanding it’s imprint and its representation 

in the greater picture.”
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TECHNICAL MEMORANDUM: FOCUS AREA 9 
PRACTITIONERS CHECKLIST 

AND AI ETHICS

Authors: Edward L. McLarney, NASA, Hampton, Virginia
B Cavello, TechCongress

INTRODUCTION 

With rapid adoption of artificial intelligence (AI) across the NASA science 
ecosystem, scientists and researchers need practical guidance for ethically 
applying AI to their work. High level ethical AI topics are being debated at global 
and national levels even while practitioners are experimenting with and deploying 
initial AI systems. One way of creating practical guidance is in the form of a 
checklist of items for ethical AI practitioners to ask themselves to help guide their 
work. The NASA SMD AI Workshop leveraged v1.0 of the NASA Framework for 
Ethical AI as a conversation starter for participants to consider how high level 
principles might apply to science’s work. These ethical AI conversations will 
provide a starting point for a community-generated set of ethical AI checklist 
items for NASA’s science community. This memo serves to document key points 
from the ethical AI checklist workshop session, providing source material and 
guidance for creating science-specific ethical AI practitioner checklists as follow-
on work.
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DIGGING DEEPER 

Rosie Campbell, head of safety-critical AI at the Partnership on AI, kicked off the 
ethical AI checklist session with a thought-provoking topic keynote, highlighting 
the proliferation of AI, the need to implement AI ethically and responsibly, and 
suggestions to move ahead with multi-faceted mitigation approaches despite 
the turbulent solution space. More details from Campbell’s keynote are found 
below. Inspired by the keynote, participants broke into small virtual groups to 
discuss three main areas of issues regarding ethical AI: understanding the ethical 
AI problem, suggestions for improvements within the broader NASA community 
context, and imagining the future. We briefly explore the keynote and the three 
discussion topics below, followed by a summary.

Campbell’s keynote, “Responsible Research and Publication Practices,” 
focused on four key areas. She noted AI as a high-stakes endeavor, with 
AI becoming ever more powerful and the risk of any powerful tool for good 
also potentially being wielded as a weapon. She noted four key elements of 
responsible AI: research integrity, research culture, research ethics, and down-
stream considerations. Campbell noted there must be shared responsibility 
among leaders and practitioners for responsibly and ethically employing AI. 
She concluded with three areas of emphasis: being transparent about research 
motivations and levels of AI employed in work, considering downstream 
consequences, and reporting on the level and quality of training for a given AI 
model. Her final encouragement to the group was to set a positive trajectory for 
responsible AI now to set the stage for the best possible future.   

Understanding the Problem  
From the breakout groups’ discussions of ethical AI, several key themes 
emerged.
• Trust. Participants noted many AI solutions are seen as black-box solutions 

where the algorithm’s training or inner workings are not understood. Potential 
mitigation approaches included creating grey-box AI solutions designed 
to expose as many inner algorithm details as appropriate, and also trusting 
systems by conducting rigorous verification and validation and reporting it in 
open literature and the repository for that model. Another trust issue was how 
to enable additional personnel to use trusted AI systems built by others.

• Bias. Bias issues included the concept of bias entering AI systems via their 
human creators, via biased data, errors in data labelling, using data not 
representative of the overall solution space (e.g. models not trained to all skin 
colors), and more. Bias considerations also came up in human resources use 
cases, noting humans must double check to ensure personnel regulations 
are fairly adhered-to. Bias can also enter the system during checking of 
data sets. It was also noted that bias can occur in a variety of systems that 
are not about human societies including Malmquist bias in which brighter 
celestial objects are more readily identified in observational astronomy. Some 
participants hoped that recognizing other types of bias might help reduce 
some of the tension researchers may feel in discussing societal bias issues.

• Unethical uses. Groups noted privacy as a risk area for unethical use of AI. 
These risks include facial recognition potentially infringing on privacy rights 

or high-resolution satellite images enabling people to track the location and 
movements of individuals or vulnerable communities. Sloppy data validation 
was also noted as unethical, and even worse was the idea of falsifying data to 
fit one’s purposes. One group noted that any ethical tool can be repurposed 
by others for unethical use, so it is important to consider the likelihood and 
dangers associated with that possibility when developing technology.

• Process harms. A tangential, yet important, unethical risk is the exploitation 
of low-wage earners (e.g. students or international workers) to conduct data 
labelling via crowdsourcing applications. Participants regarded this as a less-
often discussed possible harm. Other risks noted regarding the process of AI-
enabled science were climate impacts (e.g. carbon footprint from computer 
power requirements) and considerations about the transparency of decision-
making about how compute resources are allocated.

• Sources of AI failure. The group noted multiple contributors to AI failures, 
to include conducting science without including those affected by the 
results, lack of understanding of the problem, lack of understanding of the 
data, assuming correlation equals causation, improperly applying AI outside 
of domain expertise, lack of bias training, using data inappropriate to the 
problem, imbalance in presentation of the problem/solution, and lack of 
standards to judge solutions by. The AI failure source discussion was rich 
and the most-populated, indicating a high need to address risks and prevent 
failure, to include ethical AI failure. Several participants pointed out science 
fiction can be mined for ideas of different ways AI, or other technologies, can 
go wrong. While the community does not need to get lost in science fiction, it 
can be an interesting source of ideas and inspiration for inquiry.

• Ethical authority. Discussion included the idea many existing organizations 
are not well-equipped to define right and wrong for ethical AI and may 
consider it outside of their present scope. This implies science must not 
only strive to define ethical practices, but also lean on the global ethical AI 
debate and additional participants beyond traditional IT circles, such as 
lawyers, philosophers, human rights advocates, etc. An organization such 
as the National Academy of Sciences would be the appropriate level of 
independence and breadth and the NASA Advisory Council might review 
internal efforts.

Overall, the workshop’s breakout groups had robust, energetic discussions and 
approached the ethical AI problem from a wide variety of viewpoints. Ethical AI 
is a challenging, multifaceted topic in the global scientific community, and many 
participants noted a sense of “having more questions than answers.” The topic 
areas that emerged from this workshop—trust, bias, unethical use, and sources 
of failure—all resonated with themes in the broader the science community and 
are reflected in the larger global debate.
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IMPLICATIONS

Suggestions for Improvements
Breakout groups did far more than just admire the problem. Thoughtful, creative 
experts generated ideas around several themes.

• Data handling. Some of the areas discussed included pursuing reproducible 
data, focusing on data quality, citing data sources and rewarding good 
documentation, appropriately deciding when and when not to report 
data location, data abstraction when needed, and more. There was also 
discussion about developing guidelines for sourcing data processing and 
annotation work with respect to worker well-being and fair wages and 
discussions of the added sensitivity of human data as in the case of astronaut 
health.

• Environmental considerations. Quantifying emissions from AI workloads, 
better strategy for using compute resources on the right problems, making 
code more efficient, reducing travel while developing AI (as demonstrated 
during quarantine), and other suggestions were provided as possible ways 
to mitigate or prevent the potential negative impacts of AI research on the 
environment.

• Scientific method. Participants broadly agreed that generating knowledge 
itself is an ethical pursuit, and many advocated that science (including data 
science) should not be silenced. A key point of agreement was to apply 
existing responsible research/science practices with additional emerging 
considerations and methods for ethical AI. One discussion group summed it 
up saying “ethical science is good science.”

• Checklist contents. Key ideas included: keeping and exposing the data 
one’s analysis uses; checking work via physical interpretation and extensive 
real-world validation; and establishing an oath among AI practitioners to “do 
no harm,” or similar, following traditional design-of-experiments techniques 
thus seeking to bake in ethical-by-design when creating capabilities.

• Sharing data and/or workflows. Ideas included labelling data sets as AI-
ready if they adhere to domain-specific standards, using high-level “intent” 
questions to guide development, and also considering both the data itself 
and potential uses of the data. Additional ideas included an ethics review prior 
to data / workflow release. 

• Declaring/disclosing ethics practices. Discussion included making 
reproducibility a standard for all proposals, forming a kind of ethical copyright, 
making disclosures standard practice, having ethics experts review 
proposals, making time to disclose ethical aspects despite deadlines, and 
incentivizing all organizations (government, academia, industry) to declare 
and disclose ethical AI practices.

Imagining the Future Including Ethical AI 
Small group discussions envisioned a future where AI is robustly adopted in an 
ethical manner.

• Continual aspiration for enhanced ethics. With AI as an augmentation 
or amplifier of human capability, participants pointed out AI systems should 
seek to mitigate undesired human bias rather than amplifying or obfuscating 
bias. Participants recognized that many ethics issues are not unique to AI 
and that there are opportunities to learn from other fields. Variety and diversity 
of ethical opinions was seen as key to robustness of discussions and to 
continually improving AI’s moral compass including involving stakeholders 
from outside the traditional science community. Engaging a broader research 
community is important to creating a culture in which ethics is considered as 
part of the research.

• Prioritization of ethical AI efforts. Participants emphasized a need 
to ensure focus on the most critical ethical AI questions, while avoiding 
expending resources on low priority issues or overburdening early AI 
experimentation with undue overhead. Forward thinkers also mentioned 
NASA needs to guide and accelerate ethical use of AI, always being on the 
lookout for too many regulations that over-constrain the problem. At the 
same time, some participants expressed concerns about their ability to raise 
concerns under the current NASA structure.

• Formal methods for assessing ethical AI. Participants envisioned creating 
ethical AI benchmarks, quantifying uncertainty for AI systems to make them 
more trusted and accepted. Experts suggested data, algorithms, analysis, 
conclusions, and probabilities should all be bundled in assessing AI systems 
and their impact on the larger environment/system of systems. Other 
discussions included standardized, accepted mechanisms for establishing 
baselines for algorithms, such as grading standards for AI systems, along 
with touchstone test data sets, allowing fair and unbiased AI performance 
assessment, and encouraging algorithm creators to innovate solutions which 
continually score better on these metrics. Others suggested a technology 
readiness level system for measuring ethical AI readiness. At least one group 
recognized that as important as benchmarking and assessment are, it’s 
important to communicate about ML models and AI systems with end users 
and key stakeholders in language that is clear and understandable to them.

• Systems for mitigating unintended consequences. Discussion included 
examples such as flood prediction models having the unintended effect 
of reducing home values. An abstraction of this example is an envisioned 
system that continually tests for unintended consequences and actively 
mitigates/self-corrects for them. Another suggested mitigation was to 
assess emerging technologies in limited release in order to refine training 
and troubleshoot them prior to widespread scaling/deployment. It is worth 
considering a requirement for awards for competed research to include an 
examination of the unintended consequences of their research as an adjunct 
to a proposal, either as part of the solicitation or at the kickoff meeting. Many 
participants noted that it may be impossible to avoid all negative unintended 
consequences, but that there is opportunity to be strategic.

• Lifelong ethical AI infusion and experts. Leading thinkers emphasized that 
scientific ethics should be part of all elements of education, from high school, 
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college, graduate studies, and continuing through work life. Another idea was 
creating a required ethical AI/scientific ethics class to complement existing 
financial ethics training. Experts also indicated that adding a technology 
ethics attorney/counsel to NASA’s legal team. Groups also discussed the 
idea of encouraging ethical AI training in the broader NASA community, not 
just within work.

• Globally-informed science AI ethics. One group focused on bringing 
additional expertise into NASA’s thought processes, with ideas including 
finding ethics experts, inviting them to join NASA discussions, hiring selected 
ethics experts, respecting their ideas and expertise, engaging with the 
larger scientific and ethical AI community, having ethical AI cross-training 
assignments, and generally demonstrating that NASA/science values ethical 
AI and ethical science expertise. 
 

CONCLUSION 

Despite being the last session in NASA SMD’s whirlwind virtual AI workshop, 
the ethical AI checklist session was well-attended, with participants generating 
a wide range of thoughtful ideas to provide practical guidance to AI adopters/
practitioners, even with ethical AI being a challenging open question for the 
global scientific community. The group discussed multiple facets of the ethical AI 
problem space, provided a wide range of ideas for creating concrete guidance, 
and imagined an even-brighter AI-enabled future state for the science community. 
Topic areas for understanding the problem included: trust, bias, unethical uses 
of AI, sources of failure, and ethical authority. Idea groupings for improvements 
were: data handling, environmental considerations, scientific method, checklists, 
sharing data and workflows, and declaring or disclosing ethical AI practices. 
Future visions included: continually aspiring for enhanced ethical AI, prioritization 
of ethical AI efforts, formal methods to assess ethical AI, mitigating unintended 
consequences, lifelong ethical AI learning, and leveraging the global community 
to inform science’s approach to ethical AI. Based on these learnings, follow-on 
groups are advised to work iteratively to create initial science-facing checklists for 
ethical AI practice as-inspired by SMD’s AI workshop.

Suggestions for next steps
1. Conduct a series of workshops on ethical AI with the objective to raise 

the consciousness of a large number of NASA researchers and to collect 
anecdotal experience in trying to apply ethics; 

2. Conduct a National Academy of Sciences study on ethics in science and AI-
enabled science in particular; 

3. Ascertain what actions other federal R&D organizations have taken, including 
NSF, NIH, DARPA, ONR, AFOSR, DoE Office of Science; and 

4. Using this background, identify specific actions related to competed research 
that should be included in solicitations, evaluations, awards, and reviews.
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NASA SMD AI WORKSHOP NLP AUTOSUMMARY PROJECT

Frontier Development Lab (FDL) / Trillium Technologies Inc
Leonard Silverberg & Frank Soboczenski

The goal of the Natural Language Processing (NLP) auto 
summarization project was to test the ability of emerging NLP 
techniques to automatically capture and provide a coherent 
overview of the major insights and implications from vibrant group 
discussions between over one-hundred experts running in parallel 
during the NASA workshop, which generated over 90 hours of 
insight. A machine learning based speech-to-text service was 
used (www.otter.ai) to aid the authoring of the technical memos by 
assigned experts.

It should be noted that this project was run as an experiment to test the 
potential of these tools and none of the formal conclusions in the NASA 
SMD summary document were informed by the NLP model. 

While the aim of this experiment was to highlight the performance of 
current state-of-the-art NLP summarization methods the presented 
results in this report have been edited for minor corrections such as 
repetition, incomplete sentences and transcription errors by the Frontier 
Development (FDL) team. A critical element to highlight is that the 
majority of the above mentioned errors resulted from the automated 
transcription service not from the developed NLP models themselves 
as the transcripts after a limited auto correction for filter requests were 
fed directly into the Machine Learning (ML) pipeline. A comparison of 
Focus Area 9 has been provided to highlight the differences between the 
final edited summaries and the NLP generated result (Figure 1). The FDL 
team as included a metric to highlight the level of overall corrections of 
the presented automated summaries. The FDL team is aware that those 
are not standardized metrics for the evaluation of summarization models 
such as Perplexity, ROGUE / BERT scores and others but the purpose 

here is to give a brief high level overview of the utility for such models in 
future live workshop deployments. However, we have seen that the ability 
to provide highly accurate transcripts is of enormous value in ensuring 
high fidelity value extraction and provides a foundation stone for next 
generation knowledge management - and the first ever NLP transformer 
models trained on space science subjects, to our knowledge. This project 
therefore is also a learning opportunity for principled use of expert data, 
future use of developed models and providing such data and models for 
the community.

The ethical implications of these kinds of techniques informing actual 
decision making for NASA SMD are yet to be determined. However, there 
are well established procedures in academia and industry that provide 
human-in-the-loop ethics evaluation and the team has applied as many 
applicable elements of such procedures for this experiment. For example, 
informed consent was sought after from all workshop participants and the 
option was given to individual participants to opt out of the experiment to 
name a few. For participants who opted out, a separate workshop session 
was created where none of their conversations were recorded or used for 
any NLP model development. NASA SMD may consider applying internal 
ethical procedures or adopting existing well established frameworks for 
future workshop experiments of this kind.

Figure 1: Example of difference between NLP generated result (left) and final edited summaries (right)

ABOUT THE 
NLP AUTO 
SUMMARIZATION 
PROJECT

http://www.otter.ai
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PURPOSE

While the presented outcomes in this report only provide a high level 
overview on the performance and applicability of the chosen NLP 
methods on dialog data, in this case the NASA SMD workshop, a 
scientific article published in appropriate venues will provide a more 
detailed technical insight into the used methods, model details and 
evaluations.

The purpose of this project was to apply state-of-the-art ML and NLP 
methods on data collected from the NASA SMD AI Workshop in order 
to automatically collate insight into the most prominent items discussed 
during each focus area. Automatic and parallel content capture from 
group discussions is potentially a useful method for delivering improved 
workshop outcomes for NASA. Several ML/NLP techniques have been 
applied to assemble an overview of the most significant topics, word 
frequency distributions, and graphical relationships. In addition, the entire 
data was used to fine-tune pre-trained transformer models in order to 
provide participants and NASA SMD with concise automated summaries 
of the entire workshop as well as its individual thematic breakout sessions. 
The developed models and toolkit can aid past and future workshop 
participants in content and knowledge exploration.

DATA AND LEARNINGS ON BEST PRACTICE

The data gathered for this project was spoken dialog data recorded from 
workshop participants who were made aware of this undertaking and 
agreed to their anonymized data being used for this purpose as well as 
future developments by signing a consent form. Audio (main workshop 
discussions and breakout rooms) was recorded and automatically 
transcribed into textual form via Otter.ai (https://otter.ai). Provision 
was provided for workshop participants who after explanation of the 
project goals indicated that they did not want their voice being recorded 
or content integrated into the NLP model, a step known as ‘informed 
consent’ a standard requirement for obtaining ethical clearance in ethics 
review procedures. Chat logs and digital content such as the output of 
the Jamboard group work were also recorded and digitally transcribed 
via Optical Character Recognition (OCR) or alternative software. The 
transcribed recordings were downloaded from Otter.ai by python scripts, 
that we developed, that can access the Otter.ai Application Programming 
Interface (API) and retrieve the data automatically in the desired Comma-
Separated-Values (CSV) reordered form. After retrieval of the CSV 
transcripts, limited (automatic) data cleaning scripts removed any coding 
artifacts, or items selected for deletion (for example names of workshop 
participants) from the data to create an anonymized, AI ready dataset. The 

data in total consists of ~70 session transcripts and an overall dataset size 
of 2.5MB. 

ANALYSIS AND NLP METHODS

In order to provide a platform for comprehensive analysis of the 
workshop data, several methods were applied for different purposes. 
Those methods range from sentiment analysis, frequency distribution 
modeling, topic modeling, named entity recognition (NER), visualization 
and extraction as well as OCR software. Specifically, SpaCy (spacy.io) 
was used for NER, Google’s Tesseract was used for OCR tasks (https://
opensource.google/projects/tesseract), and two strategies were used 
for topic modeling namely Guided Latent Dirichlet Allocation (LDA) with 
collapsed Gibbs sampling and a probabilistic LDA model based on Pyro 
(https://pyro.ai/). 

SUMMARIZATION MODELS 

Transformer models have become the state-of-the-art for tasks such 
as language classification, language generation, question answering 
systems, and many others. In addition, other domains such as computer 
vision recognized the potential for such models as recent advances with 
vision transformers confirm. The space of transformer models is vast 
and there are numerous base architectures that can be used however, 
for the purpose of summarization the T5 and BART architectures were 
chosen with BART being the more advanced in terms of performance 
as an internal evaluation has shown. BART is known for its effectiveness 
in text generation and comprehension. Hence, BART was the final 
architecture choice for this project. The pre-trained BART model 
(Wikipedia, Books, and scientific articles) was fine-tuned on the extreme 
summarization (XSum) dataset. XSum is a dataset to enable one-sentence 
summarizations from large documents. A critical factor here with the 
NASA SMD AI Workshop data is that the data does not consist of scientific 
articles, newspaper reports, or other narrative text but specifically dialog 
data. Hence, the model was further fine-tuned on the SAMSum corpus 
which consists of messenger-like conversations and summaries. 

The model pipeline was implemented in Python with PyTorch (https://
pytorch.org/), PyTorch-Lightning (https://www.pytorchlightning.ai/), 
and the Huggingface (https://huggingface.co/) transformer library and 
repository. For performance tracking and evaluation, hyperparameter, 
search/sweeps Tensorboard, and Weights and Biases (https://wandb.ai) 
were used. A scientific publication resulting from this work will provide a 
more detailed technical insight into methods, architectures, parameters 

https://otter.ai
http://spacy.io
https://opensource.google/projects/tesseract
https://opensource.google/projects/tesseract
https://pyro.ai/
https://pytorch.org/
https://pytorch.org/
https://www.pytorchlightning.ai/
https://huggingface.co/
https://wandb.ai
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and evaluations than this high level overview.

ADDITIONAL USE AND ETHICAL CONSIDERATIONS 

The benefit of fine-tuned large-scale transformer models aside from the 
workshop summarization use case presented in this report is the ability to 
further use such models to build additional applications, subject to ethical 
review. For example, the models based on NASA SMD AI Workshop 
topics could be leveraged for question answering systems, classification 
tasks, sentiment analysis, benchmarking for the community to name a 
few. Additionally, expanding outcomes from future workshops can be 
ensembled to allow for cross-document summarization techniques or 
other emerging NLP strategies to be applied; in other words, the corpus 
becomes more capable every time it is added to. Furthermore, the dataset 
itself is a unique resource that is potentially very valuable for the NLP 
community. 

NEXT STEPS

Frontier Development Lab is in the process of assembling the working 
building blocks of individual tasks addressed by the NLP methods into a 
comprehensive interactive platform accessible via the browser for NASA 
SMD as well as past and future workshop participants. Additionally, with 
further workshops where the NLP pipeline is applied the collated datasets 
have the ability to grow and lead to a refinement of the current models. 
FDL / Trillium Technologies also plans to transform this solution into an 
active learning platform where the underlying NLP models train and 
evaluate newly added data on the fly.
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Reviewed by Frontier Development Lab (FDL) 

Scientists are increasingly turning to AI-readiness as a way to 
improve the quality and reproducibility of their research. However, 
not having a common set of guidelines that can be shared with other 
researchers is not enough to ensure uniformity across the scientific 
community. 

Standardizing the definition of an ML-ready dataset will allow scientists 
to work together without having to repeat large amounts of data or 
code. Also, it will reduce the time and cost of developing new tools and 
methods. For this reason, we need to standardize the way we prepare and 
validate our results. The development of standards for these tools is key to 
improving the reliability and validity of our science. In this context, creating 
a global library of pre-validated models could significantly increase the 
value of what we do and ease the process of making decisions based on 
multiple datasets. 

As a result, there is a significant amount of variation in the types of 
studies being carried out by different teams. This has the potential to 
lead to problems that would otherwise be hard to solve due to the lack of 
homogeneity of the datasets and unrepresentative properties of any study. 

Additionally, many of us don’t know how to annotate and harmonize our 
experiments so we often end up publishing thousands of pieces of code 
that are not replicable or reproducible. 

Solving this problem will help unlock the power of Machine Learning 
(ML) and open new frontiers for others to advance at a faster pace. It 
will also allow for more collaboration between scientists from different 
backgrounds, co-operating with each other and accelerate the adoption 
of new technologies such as machine learning but also enable them to 
develop new ways of solving challenges that were once considered “out of 
reach”.

Therefore, standardization of AI readiness refers to ensuring the integrity 
of its predictions and artifacts. Moreover, building a pipeline for AI ready for 
use is needed to avoid biases and issues that may limit the applicability of 

your research and have a positive impact on the ability to drive forward the 
next generation of discoveries. 

A clear understanding of best practices should be achieved if we want 
to move away from traditional approaches and fast access to real-world 
applications.
 

NLP AUTO-SUMMARY
STANDARDS FOR AI 
READINESS

ABOUT THIS AUTO SUMMARY 

It should be noted that this project was run as an experiment to test the potential of NLP 
methods in comparison to human generated summaries. None of the conclusions in the auto 
generated text above should be taken as formal recommendations for NASA SMD or any 
other of its partners or affiliates. 

The summaries presented here are not the raw model output but the copy edited version 
for presentation purposes. Minor edits have been made such as removing repetition, 
transcription errors based on semantic understanding of the Otter.ai output and incomplete 
sentences.

However, the FDL team wanted to provide a metric to highlight the differences and the 
amount of corrections needed as seen by the percentage below. The percentage is based on 
word differences between the raw output and human edits. Additionally, as mentioned above 
a resulting scientific publication of this experiment will provide proper details on evaluation.

Furthermore, the FDL team wanted to highlight that most of the errors that needed correcting 
resulted from the Otter.ai transcription service that presented a middle layer between the 
spoken dialog and the NLP models.

AMOUNT OF CORRECTION: 15%
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Reviewed by Frontier Development Lab (FDL) 

Scientists are increasingly turning to AI as a way to improve the 
quality and reproducibility of their research. However, having a 
standard set of guidelines for ML-readiness is not enough to achieve 
this goal due to the large amount of data that can be stored and 
stored in different formats. 

For this reason, we will also need to develop tools that allow scientists 
from different backgrounds to co-operate with each other without 
having to rely on an unvalidated or biased dataset. Additionally, there 
is no standardization of what types of scientific experiments should be 
conducted and how to reproduce them. As a result, it is often not possible 
to ensure the accuracy of our results. 

The next generation of researchers will have access to a larger library of 
pre-processing and validated datasets so that they can advance faster 
and more reliably. Also, being able to integrate multiple datasets into a 
study could significantly reduce the time and cost of doing science. In 
this context, increasing the availability of repeatable, reproducible and 
interpretation-ready datasets is key to achieving the goals of any new 
project. 

Machine Learning is particularly important because it allows us to build 
on existing workflows and solve problems that were once out of reach. 
Solving these issues has the potential to increase the value of your 
research and ease the development of new models and methods. 

Sparsity refers to significant gaps in the current state of the scientific 
community when dealing with large amounts of raw data. This lack of 
uniformity means that even the most well-documented studies are prone 
to bias and uncertainty. A common approach to improving the reliability of 
its results is needed to unlock the power of artificial intelligence and extend 
the applicability of computing power. 

Sparsity comes at a significant cost if we do not have a shared 
understanding of machine learning across all divisions. Heavily 

unannotated and unrepresentative historical data is also limiting the ability 
to make informed decisions based on real-world predictions. 

Creating a framework for sharing and standards for best practices may 
help to harmonize the way we think about AI and inform decision-based 
science by reducing the risk of errors and biases within the lab and 
accelerating the pace of discovery.
 

NLP AUTO-SUMMARY
DATA SPARSITY AND 
HETEROGENEITY

ABOUT THIS AUTO SUMMARY 

It should be noted that this project was run as an experiment to test the potential of NLP 
methods in comparison to human generated summaries. None of the conclusions in the auto 
generated text above should be taken as formal recommendations for NASA SMD or any 
other of its partners or affiliates. 

The summaries presented here are not the raw model output but the copy edited version 
for presentation purposes. Minor edits have been made such as removing repetition, 
transcription errors based on semantic understanding of the Otter.ai output and incomplete 
sentences.

However, the FDL team wanted to provide a metric to highlight the differences and the 
amount of corrections needed as seen by the percentage below. The percentage is based on 
word differences between the raw output and human edits. Additionally, as mentioned above 
a resulting scientific publication of this experiment will provide proper details on evaluation.

Furthermore, the FDL team wanted to highlight that most of the errors that needed correcting 
resulted from the Otter.ai transcription service that presented a middle layer between the 
spoken dialog and the NLP models.

AMOUNT OF CORRECTION: 13%
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Reviewed by Frontier Development Lab (FDL) 

Scientists are increasingly turning to AI and machine learning (ML) as 
the frontiers of science. However, when it comes to reproducibility, 
having a certain level of certainty about the validity of a study is not 
enough to ensure the accuracy of our results. 

For this reason, we need to develop tools that can be shared with other 
researchers so that we do not have to rely on an unvalidated or biased 
dataset in order to advance at a faster pace. 

In this space, uncertainty refers to the uncertainty of the data being used 
for research. A large amount of time and resources are spent in making 
predictions based on a pre-defined set of datasets. The lack of confidence 
in these methods means that they are prone to bias and biases. 

Solving this problem will allow scientists to conduct more accurate 
experiments without having to repeat the original work. urrently there is no 
way to measure the value of any scientific results without quantifying their 
uncertainty. As a result, many of us don’t know if our findings are reliable 
and reproducible. This has the potential to lead to significant gaps in our 
knowledge and decision-making ability. 

Machine learning is particularly vulnerable to uncertainty due to its non-
representative nature. It is also difficult to accurately reproduce the results 
from different datasets and requires great amounts of computing power. 
Therefore, publishing a paper with high levels of uncertainty is key to 
improving the quality of decisions made by scientists. 

Uncertainty is often the most important factor in determining the suitability 
of your research and informing policy decisions.  

“Unreliable uncertainty” is the absence of trust in the reliability of what 
you’re doing and could significantly increase the risk of error rates within 
the field. Additionally, unfavourable properties of AI may limit the impact of 
using AI as a tool - such as limiting the number of ways to make informed 
decisions and increasing the cost of replicability and co-hundreder than 
traditional approaches. 

These issues are potentially life-enhancers that slow the process of 
discovery and help unlock the next generation of discoveries. But 
uncertainty and uncertainty are also barriers to uncovering the benefits 
of artificial intelligence (AI) because they pose a long-term challenge 
compared to standardization and predictability. New ways of measuring 
the relevance of human performance and application are needed to 
achieve these goals. 

NLP AUTO-SUMMARY
UNCERTAINTY 
AND BIAS

ABOUT THIS AUTO SUMMARY 

It should be noted that this project was run as an experiment to test the potential of NLP 
methods in comparison to human generated summaries. None of the conclusions in the auto 
generated text above should be taken as formal recommendations for NASA SMD or any 
other of its partners or affiliates. 

The summaries presented here are not the raw model output but the copy edited version 
for presentation purposes. Minor edits have been made such as removing repetition, 
transcription errors based on semantic understanding of the Otter.ai output and incomplete 
sentences.

However, the FDL team wanted to provide a metric to highlight the differences and the 
amount of corrections needed as seen by the percentage below. The percentage is based on 
word differences between the raw output and human edits. Additionally, as mentioned above 
a resulting scientific publication of this experiment will provide proper details on evaluation.

Furthermore, the FDL team wanted to highlight that most of the errors that needed correcting 
resulted from the Otter.ai transcription service that presented a middle layer between the 
spoken dialog and the NLP models.

AMOUNT OF CORRECTION: 10%
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Reviewed by Frontier Development Lab (FDL) 

The current state of AI and ML is not reproducible. Reproducibility 
refers to the ability to reproduce the original work with a set of tools 
and methods that can be shared by other researchers. For this 
reason, reproducibility of scientific results is often not enough to 
ensure reproducibility of existing research. 

Having an open code base for other scientists to copy and reproduce 
will allow them to build on their previous work without duplicating or re-
improving it. The way we conduct science is limited due to large amounts 
of time and resources (such as data from different labs). Additionally, there 
is no standardization of what is being done at any stage of the process. 

Machine learning is particularly prone to artifacts that are not repeatable 
when multiple studies are carried out. In this context, creating a library of 
pre-researches has the potential to unclog the gaps in our knowledge and 
enable us to advance faster and potentially solve problems that have been 
previously solved. 

However, if we want to improve the quality of our research, we need 
to move away from paper-based research and create a shared space 
for others to cooperate with each other. As a result, publishing a fully 
annotated version of a study would significantly reduce the time needed to 
synthesize and extend the validity of its results. 

This approach could also help to speed up the development of next 
generation models and accelerate the adoption of new ways of doing 
science. 

To do this, the first thing to do is to develop a tool that allows other people 
to replicate and harmonize the results of your research so that they can 
make informed decisions based on the same values and standards. 
Solving this problem is key to effectively leveraging the power of these 
technologies and accelerating the pace of discovery. 

A significant amount of effort is required to share the benefits of modern 
science across the global community. It is also important to avoid 

repeating the mistakes made by previous researchers and increase the 
accuracy of one’s work. Otherwise, future research will be biased and 
flawed.  

Improving the reliability and veracity of human and machine learning 
readiness of academic research is critical to unlock the value of science as 
a whole. 

NLP AUTO-SUMMARY
REPRODUCIBILITY

ABOUT THIS AUTO SUMMARY 

It should be noted that this project was run as an experiment to test the potential of NLP 
methods in comparison to human generated summaries. None of the conclusions in the auto 
generated text above should be taken as formal recommendations for NASA SMD or any 
other of its partners or affiliates. 

The summaries presented here are not the raw model output but the copy edited version 
for presentation purposes. Minor edits have been made such as removing repetition, 
transcription errors based on semantic understanding of the Otter.ai output and incomplete 
sentences.

However, the FDL team wanted to provide a metric to highlight the differences and the 
amount of corrections needed as seen by the percentage below. The percentage is based on 
word differences between the raw output and human edits. Additionally, as mentioned above 
a resulting scientific publication of this experiment will provide proper details on evaluation.

Furthermore, the FDL team wanted to highlight that most of the errors that needed correcting 
resulted from the Otter.ai transcription service that presented a middle layer between the 
spoken dialog and the NLP models.

AMOUNT OF CORRECTION: 13%
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Reviewed by Frontier Development Lab (FDL) 

Scientists are looking for ways to improve the quality and 
reproducibility of their research. For example, having a catalog of 
ML-readiness (ML) tools that can be shared with other scientists will 
allow them to build on previous work without duplicating it as they do 
not have to deal with large amounts of data or unvalidated code. 

Being able to compare and reproduce the results of different datasets is 
key to improving the accuracy of AI models and methods. The way we 
conduct science is limited due to the large amount of time and resources 
involved in training and developing new algorithms. 

As a result, there is a significant lack of space for replicability of the current 
dataset. In this context, publishing a library of pre-researches has the 
potential to enable researchers from different divisions to co-operate more 
effectively with each other. 

Additionally, open access to an openly shared set of guidelines could 
help to standardize the way our research is carried out and advance at 
a faster pace. It is also important to ensure that the scientific results are 
reproducible and repeatable across all divisions. 

Solving this problem would reduce the cost of computing problems 
and increase the value of discoveries. However, creating a repository of 
standards for others to reproduce and extend the validity of your work is 
not enough to achieve this goal. To do so, you need to create a platform 
for other researchers to share and verify the correctness of what you’re 
doing. 

This process is particularly important when dealing with high-scale 
projects within AI and machine learning (such as those involving large 
numbers of samples and large datasets). A common approach to sharing 
and harmonizing the properties of these tools allows to speed up the 
development of next-generation applications and accelerate the adoption 
of new technologies.   

Heavily leveraging the power of big data may also allow us to rapidly 
advance the frontiers of our knowledge and solve problems that previously 
had to be solved by just a handful of researchers. 

Currently, many of us don’t even know how to annotate and validate our 
studies. Therefore, if we want to move away from paper-based research, 
we cannot rely on traditional methods and develop new approaches 
based on well-pres knocked off the habit of making decisions that lead 
to better predictions and inform the next generation of decision-makers. 
Moreover, building a reference base for further understanding is needed to 
avoid biases and artifacts that limit the impact of multiple experiments.

NLP AUTO-SUMMARY
CATALOGING AND 
SHARING AI-READY 
DATA AND MODELS

ABOUT THIS AUTO SUMMARY 

It should be noted that this project was run as an experiment to test the potential of NLP 
methods in comparison to human generated summaries. None of the conclusions in the auto 
generated text above should be taken as formal recommendations for NASA SMD or any 
other of its partners or affiliates. 

The summaries presented here are not the raw model output but the copy edited version 
for presentation purposes. Minor edits have been made such as removing repetition, 
transcription errors based on semantic understanding of the Otter.ai output and incomplete 
sentences.

However, the FDL team wanted to provide a metric to highlight the differences and the 
amount of corrections needed as seen by the percentage below. The percentage is based on 
word differences between the raw output and human edits. Additionally, as mentioned above 
a resulting scientific publication of this experiment will provide proper details on evaluation.

Furthermore, the FDL team wanted to highlight that most of the errors that needed correcting 
resulted from the Otter.ai transcription service that presented a middle layer between the 
spoken dialog and the NLP models.

AMOUNT OF CORRECTION: 4%
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Reviewed by Frontier Development Lab (FDL) 

The current availability of high-performance computing (HEC) tools 
is limited due to the large amount of time, resources and cost of 
these tools. However, having a common set of tools that can be 
shared across multiple platforms will allow researchers from different 
backgrounds to work together more effectively. 

There is no standardization of what kind of data should be stored on a 
computer and how to reproduce it. Also, not enough resources are being 
made available for machine learning research. As a result, many scientists 
do not have access to an end-to-end platform that allows them to conduct 
their research in a reproducible way. 

The next generation of ML has the potential to solve problems that were 
once solved by traditional methods. In this context, we also need to 
develop tools with built-in capabilities so that we can build on the results of 
previous projects without having to spend time and money on developing 
new ones. 

Solving this problem could significantly increase the efficiency of our 
research and speed up the pace of discovery. Additionally, leveraging the 
power of cloud computing would allow us to advance at a faster pace as 
well as improve the quality of science. 

A significant number of applications require large amounts of computing 
power and computational power. This lack of resources means that other 
researchers don’t have the necessary resources to carry out scientific 
experiments. Therefore, creating a shared space for interdisciplinary 
research is key to unlocking the benefits of cutting-edge technologies and 
reducing the costs of code development. 

Moreover, if we want to move away from paper-based research, 
collaboration with other scientists will help to reduce the adoption of 
expensive and time-consuming models and accelerate the process of 
solving difficult problems. Machine learning is particularly important for this 
mission because it allows to extract insights from unrepresentative data 

from any dataset and extend the applicability of your research - such as 
those based on big data and large datasets. 

Currently, “cloud computing” refers to pre-processing and analytics that 
rely on large quantities of memory and processing power but they are not 
standardized or repeatable when dealing with large workloads. New ways 
to ensure reproducibility and ease of use are needed to drive forward the 
frontiers of modern science through the cloud. 

NLP AUTO-SUMMARY
COMPUTATIONAL 
PLATFORMS

ABOUT THIS AUTO SUMMARY 

It should be noted that this project was run as an experiment to test the potential of NLP 
methods in comparison to human generated summaries. None of the conclusions in the auto 
generated text above should be taken as formal recommendations for NASA SMD or any 
other of its partners or affiliates. 

The summaries presented here are not the raw model output but the copy edited version 
for presentation purposes. Minor edits have been made such as removing repetition, 
transcription errors based on semantic understanding of the Otter.ai output and incomplete 
sentences.

However, the FDL team wanted to provide a metric to highlight the differences and the 
amount of corrections needed as seen by the percentage below. The percentage is based on 
word differences between the raw output and human edits. Additionally, as mentioned above 
a resulting scientific publication of this experiment will provide proper details on evaluation.

Furthermore, the FDL team wanted to highlight that most of the errors that needed correcting 
resulted from the Otter.ai transcription service that presented a middle layer between the 
spoken dialog and the NLP models.

AMOUNT OF CORRECTION: 11%
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Reviewed by Frontier Development Lab (FDL) 

Scientists from different divisions are increasingly turning to 
cross-divisional science as a way to advance the frontiers of their 
research. However, not enough time and resources are being spent 
on developing tools that can be shared across divisions or between 
divisions. 

It is not often possible to cooperate with other scientists without having to 
transfer skills from one area to another. The potential for interdisciplinary 
collaboration is key to improving the quality and reproducibility of our 
scientific results. 

In this context, we will also need to develop new ways to apply AI methods 
to solve problems that exist in different domains. Additionally, creating a 
common set of guidelines for researchers comes at a significant cost to 
both traditional and non-specialist scientists. As a result, many of us do 
not have time or resources to work together even when we know how to 
do so. 

Solving these issues could significantly reduce the barriers to making 
informed decisions about our research faster and more reproducible. Also, 
having a shared understanding of each division’s challenges means that 
we can move away from pre-processing. Combination of the two divisions 
has the potential to drive forward the next generation of science. 

Currently, only a small fraction of US scientists come from outside divisions 
- such as engineering or astrophysicists - due to lack of time, resources 
and expertise. Therefore, if we want to effectively extend the reach of what 
we do and improve our ability to study the Earth by leveraging the power 
of artificial intelligence we should seek to unclog the gap between our 
divisions and unlock the benefits of collaborating with experts from diverse 
backgrounds.

There is no end to gaps in the current development of AI and ML models. 
Moreover, they pose a challenge to standardizing and harmonizing the 
way we design and code for these tools. It is also important to ensure 

the integrity of your research and increase the value of its validity and 
applicability. 

This is particularly important for those with different backgrounds and 
experience. Otherwise, you risk breaking down the boundaries of any field 
and potentially jeopardising the credibility of human knowledge. New ways 
of doing science are not uniform and time-consuming to achieve goals 
that allow for further exploration and discovery.

NLP AUTO-SUMMARY
CROSS DIVISIONAL 
PROJECTS

ABOUT THIS AUTO SUMMARY 

It should be noted that this project was run as an experiment to test the potential of NLP 
methods in comparison to human generated summaries. None of the conclusions in the auto 
generated text above should be taken as formal recommendations for NASA SMD or any 
other of its partners or affiliates. 

The summaries presented here are not the raw model output but the copy edited version 
for presentation purposes. Minor edits have been made such as removing repetition, 
transcription errors based on semantic understanding of the Otter.ai output and incomplete 
sentences.

However, the FDL team wanted to provide a metric to highlight the differences and the 
amount of corrections needed as seen by the percentage below. The percentage is based on 
word differences between the raw output and human edits. Additionally, as mentioned above 
a resulting scientific publication of this experiment will provide proper details on evaluation.

Furthermore, the FDL team wanted to highlight that most of the errors that needed correcting 
resulted from the Otter.ai transcription service that presented a middle layer between the 
spoken dialog and the NLP models.

AMOUNT OF CORRECTION: 12%
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Reviewed by Frontier Development Lab (FDL) 

Scientists from different backgrounds are increasingly turning to AI 
and ML tools as they seek to advance the frontiers of their research. 
However, having a common set of tools that can be shared across 
disciplines is not enough to ensure reproducible reproducibility of 
the results. 

The development of an open-source tool that allows other scientists to 
build on the original work has the potential to reduce the time and cost 
of doing science. Also, being able to share data and code with other 
researchers will allow for new discoveries to be made without duplicated 
or unvalidated.

It is critical that we develop tools capable of replicability and co-operating 
with any other discipline. In this context, creating a shared library of ML-
ready tools is key to improving the quality of our research and accelerating 
the pace of discovery. There is a significant gap in the current availability of 
these tools due to the large amount of time, resources and costs involved 
in developing them. 

This lack of standardization means that even the most well-established 
scientific results are out of date and difficult to reproduce. Solving this 
problem could significantly increase the value of what we do and speed up 
the process of discovering new ways to solve problems. 

Machine learning is often referred to as “hundred-times more accurate” 
when compared to traditional approaches. It is also extremely time-
consuming and expensive to adapt to new technologies such as 
computing power and processing power. 

Therefore, the next generation of machine learning tools will be used 
to improve the reliability and validity of existing models and extend the 
applicability of your research by allowing for collaboration between 
different divisions. A new approach to sharing and harmonizing the way 
we conduct research is needed to achieve this goal.  

Heavily leveraging the power of artificial intelligence may also help unlock 
the benefits of cutting-edge research at a faster pace and cut the barriers 
to reach new goals. Accordingly, we need to move away from traditional 
paradigms and address issues that are not repeatable if we want to 
progress faster and better understand the challenges of human health and 
prevent gaps in our knowledge.

NLP AUTO-SUMMARY
ADAPTING TOOLS 
AND METHODS 
ACROSS DOMAINS

ABOUT THIS AUTO SUMMARY 

It should be noted that this project was run as an experiment to test the potential of NLP 
methods in comparison to human generated summaries. None of the conclusions in the auto 
generated text above should be taken as formal recommendations for NASA SMD or any 
other of its partners or affiliates. 

The summaries presented here are not the raw model output but the copy edited version 
for presentation purposes. Minor edits have been made such as removing repetition, 
transcription errors based on semantic understanding of the Otter.ai output and incomplete 
sentences.

However, the FDL team wanted to provide a metric to highlight the differences and the 
amount of corrections needed as seen by the percentage below. The percentage is based on 
word differences between the raw output and human edits. Additionally, as mentioned above 
a resulting scientific publication of this experiment will provide proper details on evaluation.

Furthermore, the FDL team wanted to highlight that most of the errors that needed correcting 
resulted from the Otter.ai transcription service that presented a middle layer between the 
spoken dialog and the NLP models.

AMOUNT OF CORRECTION: 13%



142 143 NLP Auto-SummariesNLP Auto-Summaries

Reviewed by Frontier Development Lab (FDL) 

In light of the growing adoption of AI and machine learning methods, 
it is important to ensure that the results of a study are reproducible 
with other researchers. In this context, replicability refers to the 
process of duplicating or reproducibility of an original work as well as 
creating a new dataset based on previous research.

Having a shared set of guidelines for ML-readiness will significantly reduce 
the time and cost of code development. However, not being able to 
reproduce a paper from the original has the potential to lead to unvalidated 
results that could be used in different ways by other scientists. 

As a result, more than half of all AI-related research can be lost due to non-
referential issues such as artifacts or biases. Also, there is no way to verify 
the validity of what is being developed and how it should be carried out. 

The lack of transparency means that we do not know whether our results 
are reliable or accurate. This is particularly true if we want to extend the 
reach of our research and advance at the same time. 

A significant amount of time, effort and resources have been spent in 
standardizing and harmonizing the properties of these tools so that 
they stand on the shoulders of experts from different backgrounds. 
Additionally, ensuring the integrity of scientific results is key to effectively 
leveraging the power of artificial intelligence and improving the quality of 
their results. 

Solving problems that arise when dealing with AI may also allow others to 
advance faster and better understand them. Therefore, publishing a fully 
annotated and verbatim copy of your work is critical to avoid conflicts of 
interest and potentially invalidating the conclusions of previous studies. 

It is also necessary to build trust and confidence in the next generation 
of ML models. Heavily reliant on repeatability of previously published 
results and open-interpretation of existing technologies - including those 
designed for use outside the traditional limits of space and large scale 

research (such as computer science) but without any guarantees of 
accuracy or uniformity. Moreover, many of today’s AI experiments are 
biased and prone to bias because they don’t reflect the current nature of 
human knowledge.

NLP AUTO-SUMMARY
PRACTITIONERS 
CHECKLIST AND AI 
ETHICS

ABOUT THIS AUTO SUMMARY 

It should be noted that this project was run as an experiment to test the potential of NLP 
methods in comparison to human generated summaries. None of the conclusions in the auto 
generated text above should be taken as formal recommendations for NASA SMD or any 
other of its partners or affiliates. 

The summaries presented here are not the raw model output but the copy edited version 
for presentation purposes. Minor edits have been made such as removing repetition, 
transcription errors based on semantic understanding of the Otter.ai output and incomplete 
sentences.

However, the FDL team wanted to provide a metric to highlight the differences and the 
amount of corrections needed as seen by the percentage below. The percentage is based on 
word differences between the raw output and human edits. Additionally, as mentioned above 
a resulting scientific publication of this experiment will provide proper details on evaluation.

Furthermore, the FDL team wanted to highlight that most of the errors that needed correcting 
resulted from the Otter.ai transcription service that presented a middle layer between the 
spoken dialog and the NLP models.

AMOUNT OF CORRECTION: 17%
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ORGANIZING 
TEAM

The Strategic Data Management Working Group (SDMWG) AI/ML 
Working Group was established in 2020 under the charter of NASA 
Science’s SMDWG. The SDMWG lead the development of a new 
SMD-wide data management strategy plan,  will align the advances 
in information technology with the unique needs of science data 
systems and computing. This union lets the strategic plan both 
inform technology investments and provide a roadmap for how SMD 
can partner with other organizations, within NASA and externally, 
to enable greater scientific discovery. The SDMWG representatives 
include:

Dr. Manil Maskey 

Dr. Daniel Duffy 

Dr. Megan Ansdell 

Dr. Madhulika Guhathakurta 

Dr. Evan Scannapieco 

Dr. Srjia Chakraborty 

Yvonne Ivey 

Michael Little 

Dr. Steven Crawford 

Dr. Roopesh Ojha 

Dr. Sylvain Costes
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PARTICIPANT 
LIST

Many thanks to everyone who lent their insights and wisdom to the  
2021 NASA SMD AI Workshop:

Aaron Piña, NASA HQ (Earth Science Division)
Abby Azari, University of Berkeley, California, Space Sciences Laboratory*
Adam Oberman, Mila and McGill University (Dept of Math and Stats) 
Aenor Sawyer, UCSF (Dept Orthopaedic Surgery, UC SpaceHealth)
Akshit Arora, NVIDIA (Solutions Architecture)
Alan Li, NASA Ames Laboratory for Advanced Sensing
Alexander Barrie, NASA
Alexander Lavin, Institute for Simulation Intelligence
Amitava Bhattacharjee, Princeton University (Department of Astrophysical Sciences
Anamaria Berea, George Mason University and Frontier Development Lab
Andrés Muñoz-Jaramillo, Southwest Research Institute
Andrew Westphal, UC Berkeley
Andrew Michaelis, NASA Ames Research Center (TNC)
Anirudh Koul, Pinterest / SpaceML
Anuj Karpatne, Virginia Tech, Department of Computer Science
Ashish Mahabal, Caltech (Astronomy) and JPL (39)
Ashley Villar, Columbia University (Astronomy)
Ashley Pilipiszyn, OpenAI
Asti Bhatt, SRI International (Center for Geospace Studies)
Atilim Gunes Baydin, University of Oxford
Ayris Narock, NASA
B Cavello, TechCongress
Barbara Thompson, NASA GSFC Heliophysics Science Division
Bertrand Le Saux, ESA ESRIN Ø-Lab
Bill Diamond, SETI Institute
Brant Robertson, UC Santa Cruz, Department of Astronomy and Astrophysics
Brian Thomas, NASA/Heliophysics (Code 672)
Brian Powell, NASA GSFC
Brian Nord, Fermilab *
Bruce Bassett, AIMS, SAAO and UCT
Bruno Sánchez-Andrade Nuño, Microsoft
Chedy Raissi, Ubisoft
Chris Bard, NASA 
Chris Gottbrath, Facebook AI (PyTorch) 
Chris Mattmann, NASA JPL
Christian Reyes, NASA 

Christine Edwards, Lockheed Martin Space
Christine Custis, Partnership in AI 
Christoph Keller, NASA Goddard, GMAO / USRA
Christopher Lynnes, NASA IMPACT project (SMD)
Compton Tucker, NASA GSFC
Daisuke Nagai, Yale University
Dan Crichton, NASA/JPL
Dan Berrios, ARC/BPS (USRA)
Daniel da Silva, NASA/USRA, Heliophysics
Daniel Duffy, NASA Goddard Code 606
David Donoho, Stanford University
David Hall, NVIDIA
Delaney Cosgrove, NASA 
Ed McIarney, NASA HQ OCIO TDD BIO / DT
Ellianna Abrahams, UC Berkeley, Astrophysics and Statistics *
Erik Antonsen, Baylor College of Medicine
Erin Ryan, Booz Allen Hamilton (Astrophysics)
Evan Scannapieco, NASA SMD - Astrophysics Division
Frances Adiele, BAH
Frank Soboczenski, King’s College London (Medical Division)
Gautham Narayan, University of Illinois at Urbana-Champaign
Geeta Chauhan, Facebook AI 
Graham Mackintosh, BAERI / NASA (ARC-TN)
Hamed Alemohammad, Radiant Earth Foundation
Hannah Kerner, University of Maryland/Earth Sciences
Ignacio Lopez-Francos, NASA ARC
Ingo Waldmann, University College London (UCL)
Irina Kitiashvili, NASA Ames Research Center (NASA Advanced Supercomputing Division) *
Ivan Zvonkov, University of Maryland/NASA Harvest
Jack Hidary, Google X@alphabet
Jacqueline Le Moigne, NASA Earth Science Technology Office (ESTO)/NASA ESD
James Parr, Trillium Technologies & Frontier Development Lab (FDL)
Jeffrey Smith, SETI Institute
Jenna Lang, AWS - Healthcare & Life Sciences
John Dorelli, NASA-GSFC Heliophysics Division
John Moisan, NASA/GSFC Code 610.W 
John  Kalantari, Mayo Clinic
John Karcz, NASA Ames Research Center, Space Science and Astrobiology Division
Josh Peek, STscI (astro)
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Katie Baynes, NASA ESDS
Kevin Murphy, NASA SMD
Laura Carriere, NASA Center for Climate Simulation (SED)
Lauren Sanders, NASA Ames GeneLab
Leonard Silverberg, Trillium Technologies & Frontier Development Lab (FDL)
Lorraine Fesq, JPL/Caltech
Louis Barbier, NASA / Office of the Chief Scientist
Lukas Mandrake, NASA JPL Div 39
Madhulika Guhathakurta, NASA SMD/Heliophysics
Manil Maskey, NASA,  SMD, Earth Science
Mark Cheung, Lockheed Martin Advanced Technology Center
Megan Ansdell, NASA HQ, Planetary Science Division
Michael Krihak, NASA ARC
Mike Little, NASA GSFC
Mike Seablom, NASA SMD - Earth Science Division
Milad Memarzadeh, NASA Ames Research Center - Intelligent Systems Division
Muthukumaran Ramasubramanian, NASA IMPACT
Nadia Ahmed, UCI
Nathan Kutz, University of Washington
Nicolas Longepe, ESA ESRIN Ø-Lab
Nikunj Oza, NASA ARC
Pierre-Philippe Matthieu, ESA ESRIN Ø-Lab
Rahul Ramachandran, NASA MSFC Earth Science
Regiuel Days, Google
Rob Reynolds, NASA (Human Health and Performance Directorate)
Robert Stojnic, Facebook AI 
Roopesh Ojha, NASA HQ
Rosie Campbell, Partnership on AI
Ryan Scott, NASA Ames; BPS; NASA GeneLab and Ames Life Sciences Data Archive
Sapna Rao, Lockheed Martin Space - CCS
Sara Jennings, Trillium Technologies & Frontier Development Lab (FDL)
Savannah Thais, Princeton University (Physics and Research Computing)*
Scott Penberthy, Google Cloud
Shashi Jain, Intel Corp
Siddha Ganju, NVIDIA, AI Applications
Srija Chakraborty, NASA GSFC, USRA (Earth Science)
Steve Crawford, NASA HQ
Stewart Doe, NASA
Supriyo Chakraborty, IBM Research

Sveinung Loekken, ESA ESRIN Ø-Lab
Sylvain Costes, NASA (Biological and Physical Sciences)
Tianna Shaw, NASA Ames Research Center Space Biosciences Division
Tsengdar Lee, NASA/SMD/ESD
Ved Chirayath, NASA ARC
Victoria Da Poian, NASA GSFC (699)
William (Bill) Miller, National Science Foundation, Office of Advanced Cyberinfrastructure
Yarin Gal, Oxford University 
Yvonne Ivey, NASA SMD
Zack Gainsforth, University of California at Berkeley / Space Sciences Laboratory
Zain Masood, Boulder AI (CTO, Engineering)

*These individuals politely requested to opt-out of the data gathering aspect of this 
workshop after being informed of the intention to create discussion transcripts and auto-
summarization. The organization team respects their principled decision and help to 
establish best practice in AI ethics and knowledge management. 
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Many thanks to everyone who lent their insights and 
wisdom to this workshop.


