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Abstract 

 
It has been documented that space flight increases ICP, causes space flight-associated neuro-
ocular syndrome, damages CBF AR, causing orthostatic intolerance, headache, and impaired 
neurocognitive performance of astronauts. Research attention was focused on ICP and not on 
CBF. The cerebrovascular function was mentioned for the first time only in the 2019 solicitation. 
REG is a noninvasive method to study CBF and its AR. A recent clinical study demonstrated that 
REG pulse wave morphology shows identical alteration as ICP by reflecting ICP elevation. 
Miniaturized REG device is available today.   
 
Introduction 
 
It has been documented that long-duration space flight increases ICP, causes space flight-
associated neuro-ocular syndrome (SANS), impairs dynamic cerebrovascular AR, and reduces 
cerebrovascular CO2 reactivity, causing orthostatic intolerance, headache, accelerated vascular 
aging, blood-brain barrier (BBB) integrity, and impaired neurocognitive performance of 
astronauts (1-20). The reasons for the development of eye changes in space have not been 
clarified. NASA research attention was focused on ICP and not on CBF and its AR. In animal 
studies, it was demonstrated that prolonged microgravity remodels the walls of blood vessels 
(8). The cerebrovascular function was mentioned for the first time only in the 2019 solicitation 
(Solicitation Number 80JSC020L0003). SANS is a secondary risk and relevant gap (Solicitation 
Number: 80JSC019L0001; 2019) and 2021 (2).  A recent publication details impacts of 
spaceflight on CBF AR (12). NB: 1) SANS is a unique condition with no perfect terrestrial analog. 
2) The recent list of SANS gaps (n=14) doesn’t mention CBF or its AR (2). Also, it was out of 
focus that the ophthalmic artery is a branch of the internal carotid artery, i.e., showing CBF AR. 
A lecture on intravascular pressures in space did not mention CBF or its AR (21). 
    Although NASA has sought the development of a real-time noninvasive monitoring method of 
ICP for use on the International Space Station (ISS) until recently no noninvasive, continuous 
brain monitoring device has been available to measure CBF AR on ISS. Because ICP 
measurement is invasive, it is not ideal in real-time on astronauts, while on the ISS. CBF was 
measured typically with Transcranial Doppler (TCD) only after they return from the space 
mission. Additionally, TCD is used to determine CBF in the middle cerebral artery, but CBF AR, a 
function of arterioles, is not measured. Early studies by the US Army Walter Reed Army 
Institute of Research (WRAIR) proved that REG reflects both CBF and ICP (39). This fact was 
confirmed additional studies and based on these results, the US Department of Defense 
supported the development of a non-invasive, continuous brain monitor, using REG technology. 
Unit dimensions are: 85 x 58 x 16 mm; mass: 102.06 g (24, 25). This operator-independent 
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device can use regular ECG electrodes or reusable conductive fabric, placed on the forehead 
and lower arm. NB: Russians used REG in the 1970-is on Salyut 4 but did not measure CBF AR 
nor change of REG pulse wave morphology (26, 27). 
 
REG 
 
The Food and Drug Administration definition has been stated that “A rheoencephalograph is a 
device used to estimate a patient’s cerebral circulation by electrical impedance methods with 
direct electrical connections to the scalp or neck area” (28). REG name was suggested by 
Jenkner (29). REG is based on monitoring pulse synchronous variations in cranial electrical 
impedance over time. The significant physiological information derived from the REG signal 
relates to vasoconstriction and vasodilation in the brain. This is manifested by decreasing and 
increasing REG pulse amplitudes, respectively. Additionally, REG reflects the elasticity of the 
vessel wall (compression chamber function) and shows identical morphological distortion to the 
ICP waveform during ICP elevation (32). The units of REG amplitude are measured in Ohms, 
however, there are no normative values associated with the REG pulse amplitude value. REG 
pulse wave formation is influenced by many factors (41). REG pulse wave amplitude is due to 
the conductivity differences between brain tissue, and cerebrospinal fluid and blood, with 
blood and cerebrospinal fluid being better conductors than the brain and other ‘dry’ tissue. The 
lower limit of CBF AR by REG was closely correlated to invasive ICP in WRAIR and Johns Hopkins 
University study by measuring ICM+ program (33, 34). REGx, a CBF AR index, is calculated from 
REG and arm bioimpedance pulse waves that can replicate PRx without the need for invasive 
methods. REGx calculation is identical to PRx calculation, which is calculated from invasive ICP 
and arterial pressure by ICM+ program. Several WRAIR animal and human validation studies 
were performed demonstrating that REG reflects cerebrovascular reactivity, correlates with 
ICP, carotid flow, laser Doppler flow, TCD flow, quantitative CBF, tissue O2 (35-39). Recent 
clinical work suggests that REG can be used to detect the status of CBF AR as well as elevated 
ICP since REG pulse wave has identical morphology change to those described on ICP (42). 
Influencing factors of REG pulse waves were detailed elsewhere 41). Early REG studies not 
measured CBF AR (41-46). NASA translated REG-related Russian publications from the mid-
1960-ies (47).  
 
CBF AR and CO2 
 
Cerebral blood flow autoregulation (48, 49) describes a mechanism that maintains CBF stable 
despite fluctuating perfusion pressure. Hypercapnia increases CBF by cerebral vasodilation (50). 
Hypercapnia causes the plateau to progressively ascend, a rightward shift of the lower limit, 
and a leftward shift of the upper limit (51). In other words, CBF AR capacity is decreased during 
hypercapnia.  
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Effect of hypercapnia on cerebral autoregulation. Autoregulation curves are in black at 
normocapnia and red at hypercapnia. Cerebral resistance vessels are illustrated in red/pink. The 
bold solid blue arrows indicate the dynamic shift of the maximally dilated and constricted 
cerebral resistance vessels at hypercapnia. The dashed black and blue lines/arrows indicate the 
lower and upper limits at normocapnia and hypercapnia, respectively. A = the curve below the 
lower limit; B = the plateau at normocapnia (B0), mild hypercapnia (B1), and severe 
hypercapnia (B2); C = the curve above the upper limit at normocapnia (C0), mild hypercapnia 
(C1), and severe hypercapnia (C2); CBF = cerebral blood flow; CPP = cerebral perfusion 
pressure; LL = the lower limit at normocapnia (LL0), mild hypercapnia (LL1), and severe 
hypercapnia (LL2); R = calibers of cerebral resistance vessels at normocapnia (R0), mild 
hypercapnia (R1), and severe hypercapnia (R2); UL = the upper limit at normocapnia (UL0), mild 
hypercapnia (UL1), and severe hypercapnia (UL2) (51). 
 
Suggestions/Impact 
 
Use of REG 1) helps measure the cerebrovascular aspect of SANS and ICP 2) fits in NASA RFI 
Solicitation (Number: 80JSC020L0003 HRP) d. Cerebrovascular function; 3) can help to create 
and testing an adequate countermeasure for long-duration/deep space exploration; 4) has 
terrestrial applications such as neuromonitoring in ICU, and 5) military-medical use for 
transportation of wounded service members with traumatic brain/blast injury, hemorrhage, 
and hypotensive resuscitation. 
 
Recommendations and or Priorities 
 
What are the priorities and/or recommendations that you are suggesting that NASA implement 
to address these questions? 
1) standardization of a CBF AR test (breath-holding) for increased CO2 concentration on ISS; 2) 
Software and hardware modification of miniaturized REG device for use on ISS; 3) 
Establishment of a correlation between REG and 1) TCD; 2) fMRI BOLD demonstrating that REG 
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reflects local vascular response; 4) Measure REG immediately before or after fundoscopy and 
optical coherence tomography scan on ISS. 
 
This is a cross-disciplinary topic 
 
1) Such a device can also be modified as a life sign monitor to record EEG, ECG, and respiration 
as well      
    as to support dead-or-alive decision making both in space and on Earth 
2) Other areas of research: Countermeasures 
 
The above proposal covers two suggested priorities: 
 
1. Science that can or must be done in space, with anticipated value to human exploration 2. 
The science that can be done in space, with anticipated value to humans on Earth (52).  
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