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Background of 3D Bio-printing and Its Use in Space 

Astronauts experience higher radiation and altered gravity levels in space, which increase the 
risk of health threatening incidents, such as bone demineralisation, bones mass reduction, 
diminished cardiovascular activity, injuries, or even cancer. Severe health incidents such as 
extensive burns, bone fractures or even organ failure, can lead to serious emergency situations, 
and potentially to the death of the astronaut if not treated correctly in time. The probability of these 
severe health risks increases in longer and more distant deep-space exploration missions, while the 
crew cannot access medical support from Earth anymore [1-3].  An on-site medical treatment is, 
therefore, crucial to supporting manned space exploration missions, and especially future deep-
space exploration and colonization. New technologies such as additive manufacturing (AM) and 
3D bio-printing offer promising perspectives for on-site medical treatment applications [4-12].  

Additive Manufacturing (AM) technologies, also known as 3D Printing, which fabricate 
three-dimensional objects directly from a digital model by accumulating materials, have been 
widely investigated in the past few years for on-site manufacturing applications in space [10-14].  
Conventional AM can be used to maintain the clinical infrastructure in space by manufacturing 
medical tools, splints for medical orthoses, tailored casts and dental equipment, such as implants 
or fillings [15].  

3D bio-printing of soft matter (e.g. human tissues and organs) is an additive manufacturing 
methodology which employs 
simultaneous layer by layer 
deposition of cell types and 
cyto-compatible biomaterials 
such as hydrogels which, 
together provide a supporting 
structure capable of 
generating organoids or 
potentially entire functional 
organs [16-22]. It has been 

successfully used on Earth 
to produce ear-shaped 
cartilage for auricular 
reconstruction [16], and 

print tumorous tissues for biomedical research [23].  
3D bio-printing is considered as a promising solution for direct medical support in space, 

which can offer a broad range of potential future applications ranging from simple tissue constructs 
for treating skin lesions and bone defects, to the potential fabrication of complex, vascularized 
tissue constructs including organs such as kidney and liver (and potentially, even heart and brain 
tissues). [9-14, 24] Notably, DIW based 3D bioprinting can produce in situ artificially-grown 
organs from cells of a particular patient (an austronaut). Figure 1 summarizes the mostly used AM 
technologies for 3D bio-printing, including inkjet bioprinting, orifice-free bioprinting, and 
extrusion bioprinting which is also known as Direct Ink Writing (DIW) [25].   

Among these 3D bioprinting techniques, the extrusion bioprinting, also known as DIW, is the 
most popular and broadly used bioprinting technique on Earth and also in space, due to its ease of 
use in microgravity conditions and versatile platform.  It is rapidly developing worldwide in the 
last couple of years [11].  In July 2019, the so-called ‘Biofabrication Facility’ developed by the 

Fig.1 Mostly used AM techniques for 3D bioprinting and the associated performance in 
terms of scanning speed and viscosity and cell density obtained: inkjet, orifice-free and 
extrusion bioprinting [18]  
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U.S. companies TechShot and nSrypt, containing a DIW bioprinter, was launched and has been 
installed at the International Space Station (ISS). Media reported that it has successfully printed a 
large volume of human heart muscle cells aboard the ISS [26]. The European Space Agency ESA 
also has started to develop a 3D bioprinting system which shall be integrated in the so-called Biolab 
at ISS [27]. Several USA companies are actively working on the development of certified space 
3D bioprinters of the extrusion type for performing bioprinting experiments at ISS [28]. 
 

Challenges  

Despite the tremendous potential and recent progress in microgravity bio-printing, to 
accomplish the aim of supporting medical treatment in space, many scientific challenges remain 
to address. The major limitation is how to create volumetric structures with required properties 
that provide good conditions for cell survival and development and contain perfusable, 
vasculature-like support systems [17-21]. From a manufacturing technology standpoint, faster 
printing processes, higher printing resolution for vasculature production, and complex bioreactors 
for tissue maturation are needed to better recreate the natural structures of the final tissue 
equivalents and to increase long-term cell viability [17, 19]. 

However, the current DIW bioprinting technique cannot fully accomplish these manufacturing 
aims. Its printing speed is very low, i.e., only a few millimeters per second.  The minimum feature 
size that it can fabricate is usually around a few hundred micrometers, which is not adequate for 
fabricating complex vascular systems.  Another major challenge for current DIW bioprinting is 
finding the optimal conditions between the printability and fidelity of bioprinted constructs and 
their biocompatibility [29-36]. In order to be printable, the ink has to have appropriate rheological 
properties, so that it can be extruded and then, retain its shape after the extrusion.  To achieve the 
desired printability, additives are usually added into hydrogels to increase their viscosity, while 
the effect of the most important physical property- viscoelasticity- is currently unexplored at all 
[37]. The viscous bioinks have bioprintability with a high level of fidelity, but their 
biocompatibility and permissiveness for post-printed sprouting angiogenesis are usually 
compromised [38].  

To address those challenges of the current DIW bioprinting technique, we propose to deploy 
our patented e-DIW technique [1, 39-44] to bioprinting and investigate its use in space. The 
preliminary results revealed that compared to the current commercial DIW systems, our e-DIW 
prototype machines at UIC print at a speed of several meters per second (e.g., 13.2 m/s), which is 
orders of magnitudes faster.  In addition, the e-DIW process can print features with sizes as small 
as 5 µm.  Due to the effect of the electric field, a wide range of inks which are difficult or even 
impossible to be printed in current DIW systems, can be printed successfully in the novel e-DIW 
system. Figure 5 depicts some test cases printed by the e-DIW system [45].  The preliminary study 
of e-DIW on Earth indicates that it has the potential to replace the conventional DIW technology 
to be used for on-site bioprinting in space and advance the on-site tissue engineering and even 
organ printing in space.  To test this hypothesis, this project will investigate e-DIW for printing of 
additive-free renewable biopolymers like alginate and methylcellulose, and potentially human-cell 
cultures, and the influence of reduced gravity on e-DIW bioprinting. 
 
 
 



4 
 

Electric-field-assisted Direct Ink Writing 
This white paper focuses on the scientific rationale for deploying an electric-field-assisted 

Direct Ink Writing (e-DIW) technology under different gravity conditions ranging from partial 
(lunar, martian) to zero- or microgravity environment to print patient-specific tissue constructs in 
manned space exploration missions.  The PIs recently patented a novel extrusion-based additive 

manufacturing technology, electric-field-assisted 
Direct Ink Writing (e-DIW), which can extrude 
almost any material (from aqueous liquids to viscous 
pastes and slurries, from polymer solutions to cell-
loaded hydrogels, etc.) onto a substrate to build a 3D 

construct at a super-high speed (at least, several 
meters per second, 30 times faster than the current-
of-the-art) at a very high resolution ( ~ 10 µm).   

As illustrated in Fig. 2, in e-DIW, the printing 
needle is grounded and an external electric field is applied by applying voltage to the governing 

electrode near the grounded nozzle.  By manipulating 
the air pressure and the electric field strength, the ink 
extrusion and ink-substrate wetting can be 
dynamically and locally controlled, thus allowing for 
printing at a much higher speed and use of inks and 
substrates that are impossible in other existing DIW 
systems, in particular on substrates with complicated 
surface landscape and high roughness.  As shown in 
Fig. 3, compared to the state-of-the-art DIW process, 
our patented e-DIW process successfully addressed 
the ink instability and the speed limitation issues, and 

thus achieved a higher print reliability and orders of 
magnitude faster print speed [45].  Compared to the 
millimeters per second printing speed typically 
found in commercial DIW systems, the e-DIW 

prototype machines developed by our group at UIC print at a speed of several meters per second 
and a resolution of a few micrometers.  

 To accelerate the adoption of this new 3D printing process for bioprinting in space and 
achieve faster and more accurate manufacturing of patient-specific tissue constructs and even 
organs which would be required in space exploration in the future, this project will investigate the 
following aspects: 1) study the liquid ink-gas interfaces, liquid ink-cell interaction, and cell activity 
in the ink in ground, lower-gravity and microgravity environments; 2) experiments will be 
conducted on Earth under normal gravity, using drop towers, sound rockets, unmanned aerial 
vehicle (UAV), parabolic flights, and potentially on Space stations, on the Moon and Mars surfaces; 
3) study the shape of gas-liquid ink- solidified ink interface affected by liquid ink flow, cell flow, 
and reduction in gravity or microgravity, 4) study the effect of electric field and gravity vector 
magnitude on printing performance including accuracy, resolution, and speed. In particular, the 
effect of the Coulomb force on ink-substrate wetting, ink solidification, manufacturing resolution, 
and printing of overhanging features in microgravity environment will be characterized and 
modeled; and 5) especially, bio-hydrogels will be used as inks for e-DIW.  As shown in Fig.3 and 

Fig.2. Schematic of e-DIW setup [45] 
 

Fig.3. Comparisons of conventional DIW process and 
the novel e-DIW process. [1] 
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Fig.4, on Earth under normal gravity, the electric field effect could 
change the gas-liquid ink-substrate interface effectively to enhance 
the wetting of liquid ink on substrate by pulling the ink downward 
to the substrate and counteract the surface tension-driven 
instabilities.  We assume that under microgravity conditions, the 
liquid ink-substrate wetting problem in an extrusion-based 3D 
printing process (i.e., DIW) will be more severe due to the reduced 
gravity, as reported in literature [46-48], and our e-DIW technology 
could effectively solve this problem by inducing the pulling 
downward effect using an electric field.  

If successful, the process will provide a facile, low-cost, high 
throughput and high resolution method to fabricate customized 3D 
tissue constructs for on-site medical treatments in manned space 
exploration missions.  

  
Future Tasks & Conclusion 

Accordingly, the following research tasks are required for fundamental understanding and 
scalability to facilitate research as identified in NASA’s “Grand Challenges in Soft Matter Science: 
Prospects for Microgravity Research” [49]: 
Task 1. Characterization of e-DIW bio-printing First, biopolymers including alginate and 
methylcellulose-loaded with cells will be tested in e-DIW process. The printed geometry fidelity 
and resolution will be characterized and modeled as functions of the electric field strength and bio-
ink composition. The printed trace morphology will also be investigated and its correlation with 
the e-DIW process parameter settings will be analyzed.  Furthermore, the cell viability and 
proliferation rate in the printed structure will be measured.  Comparisons between the conventional 
extrusion-based bioprinting and our novel e-DIW bioprinting will be made, in terms of the 
printable bioink viscosity range, viscoelastic relaxation time, scaffold porosity, and 
biocompatibility.  A systematic and deep understanding of the influence of electric field on bio-
ink printability, tissue construct integrity, and cell viability will be established.   
Task 2. Multiphysics-based modeling and experimental investigation of microgravity e-DIW 
printing  The printing process include ink extrusion from the nozzle, ink trace deposition, and ink 

trace solidification. The micro-gravity 
deposition of bio-ink will be mimicked on 
Earth by manipulating it into 
perpendicularly depositing on a vertical 
substrate, using the method described in 
[50], as well as tested using drop tower 
experiments, and tests in sound rockets, 
parabolic flights, unmanned aerial vehicles 
(UAV), and parabolic flights, to prepare 
this technology to deployment on Space 
stations and on the celestial body surfaces. 
The prevailing physical mechanisms of 
gravity and electric field on bio-ink 

deposition and solidification can be modeled using the approach developed in our previous work 

Fig. 5 A comparison of extrusion-based 3D printing of bioinks 
without electric field (i.e., conventional DIW) and with electric 
field (i.e., the e-DIW process) on 3 different substrates.  

Fig.4. Comparisons of gas- liquid ink-
substrate interfaces (side view) and 
corresponding printed results (top view): 
using an extrusion 3D printing process 
without an electric field (i.e., DIW) and 
with an electric field (i.e., e-DIW).  
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[45].  As shown in Fig.5, the ink jets deposited on different substrates exhibit significantly different 
configurations in a conventional DIW system, which has no electric field (E.F.), and in the e-DIW 
system which has an external E.F. applied.  Under the normal gravity, when the substrate is too 
rough, the liquid ink tends to break into large drops and cannot wet the substrate in the conventional 
DIW process if the substrate is too rough.  In the e-DIW process, the applied electric field 
effectively changes the interactions of liquid ink-nozzle-substrate and pulls the ink towards the 
substrate surface, working similarly as the gravity force, which holds great promise to applications 
of e-DIW in space exploration. The configurations of ink jet without E.F. and with E.F. have been 
analytically modeled and experimentally validated for on Earth in our previous work [45]. In this 
task, the effect of Coulomb force on bio-ink extrusion, the jet configuration, and ink-substrate 
wetting interface, under microgravity conditions will be modeled and verified by experiments 
under different gravity conditions, including microgravity.  Furthermore, numerical simulations 
should be conducted to simulate the bio-ink extrusion and deposition in microgravity and reduced 
zero-gravity conditions.  The liquid ink-gas interfaces, liquid ink-cell interaction in microgravity 
environment will be explored and elucidated through the multi-physics modeling and numerical 
simulations.  Numerical simulations will also need to be used to study the shape of gas-liquid ink- 
solidified ink interface affected by liquid ink flow, cell flow, and reduced gravity.  
Task 3. Study of bio-ink solidification and bi-oink-cell interaction in space via drop tower 
experiments, tests in sound rockets, parabolic flights, and UAV-assisted microgravity simulation.   
The study of bio-ink solidification requires utilization of different gravity fields for different 
durations. Different platforms (e.g.- drop tower, sound rocket, UAV) will be required. As an 
example, a hex-rotor unmanned aerial vehicle (UAV) system can be utilized as a microgravity-
enabling platform. A constant acceleration of the UAV can be made equal to the freefall 
acceleration and thus, any payload on-board will experience microgravity.  In particular, a 
feedback linearization-based acceleration control law and a parameter estimation scheme, as 
developed in [51] will be employed to ensure the convergence of acceleration to the desired value 
under a certain condition and maintain it to achieve the desired reduced- or microgravity.  With 
the UAV-based microgravity enabling platform, the liquid biopolymer ink trace or layer samples, 
cell-loaded bio-ink trace samples, and 3D bio-ink tissue construct samples printed on a small-size 
substrate will be placed on the platform to experience reduced or microgravity. Accordingly, the 
liquid ink- gas interfaces, liquid ink-cell interaction, and cell activity in the ink in microgravity 
environment will be recorded right after the UAV microgravity simulation flights.  In addition, the 
time needed for ink solidification and the solidified ink trace geometry in microgravity conditions 
will be characterized, to understand the effect of microgravity. Similar experiments will also be 
conducted using all other available experimental techniques: drop tower experiments, tests in 
sound rockets, parabolic flights to prepare e-DIW of human tissues and organs to deployment in 
space exploration.  

With the knowledge and manufacturing technology developed in this project, it is expected 
that e-DIW platform will be a key component of NASA’s focus of deep space exploration. The 
fundamental questions answered in this important area of soft matter research will expand the 
present commercially available DIW-based bio-printing technique by >100 times faster printing 
and >5 times higher resolution under Earth and the reduced-gravity and microgravity conditions. 
It is also expected that the e-DIW holds great potential of an order-of-magnitude higher cell 
viability resulting from the combined effect of the improved printing conditions and use of 
biomaterials that are more biocompatible but not printable by conventional DIW systems.    
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