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Abstract 

Significant advancement beyond the current state of the art in management of cryogenic propellants in 
Space is needed to use cryogens as a viable propellant in higher performing nuclear thermal propulsion or 

even the highest performance chemical propulsion systems for future exploration missions. To bring about 

this advancement, the aerospace community has converged on the transformative Zero-Boil-Off (ZBO) 

strategy to achieve reliable, cost-effective, efficient, and lossless propellant storage and transfer in Space. 
But before such a complex technology can be fully developed, implemented and demonstrated in Space, 

important and decisive scientific questions regarding the multiple gravity-dependent interacting phase 

change and transport phenomena that affect the performance of the propellant tank system in microgravity 
must be delineated and resolved.  

In this white paper, we recommend a comprehensive multiplatform research campaign to achieve this 

goal. This campaign consists of a series of hierarchical small- and medium-scale microgravity science 
experiments with both simulant and cryogenic fluids to acquire unique microgravity science data. In parallel 

high-fidelity computational models will be also developed based on the delineated physics and validated 

by the detailed microgravity data provided by state-of-the-art whole-field diagnostic techniques.  

The cohesive scientific undertaking advocated here for advancement of space-based cryogenic two-
phase systems is akin, in scope and impact, to the comprehensive scientific effort that was successfully 

undertaken by the Department of Energy to bring transformative advancements in the efficiency, safety, 

and reliability of two-phase water-steam systems for ground-based nuclear technologies. The state-of-the-
art experimental-computational-diagnostics approach to be followed aims at elevating the microgravity 

two-phase experiments to the level of fidelity and accuracy enjoyed by ground-based investigations 

focused on fundamental fluid physics discovery.   
We decide today whether this will be the reality tomorrow ….. 
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1. Introduction 

NASA’s vision for returning crew to the Moon in a sustainable manner, followed by human 

missions to Mars, is a daunting challenge. Since Space is not only an exploration frontier but a 

commercial and military one, as well, this challenge also extends to national security and defense 

arenas1,2. As testified by the senior advisor to NASA Administrator, Bhavya Lai, before the US 

House Space & Aeronautics Committee: “[US] strategic competitors, including China, are 

aggressively investing in a wide range of Space technologies including nuclear power and 

propulsion to fulfill their ambitions for sustained human lunar presence as well as Martian and 

deep-space missions …. US needs to be tooled at a fast pace to remain a leader in the global space 

community”3.  

Countless mission studies by NASA and its industry partners have pointed to cryogenic 

propellants as a required element for meeting the challenges of chemical and nuclear thermal 

propulsion for long duration missions3-17. However, to use cryogens as a viable propellant, 

significant advancement beyond the current state of the art in Cryogenic Fluid Management (CFM) 

of propellants in Space is needed to: (a) allow in-space and on-surface propellant preservation for 

years rather than hours; (b) eliminate wasteful continuous firing of settling thrusters for liquid 

propellant acquisition and vapor venting; and (c) enable propellant transfer to and from space 

depots for refueling of spacecraft that has never been demonstrated in Space. These advancements 

will have a significant transformative impact enabling the use of higher performing nuclear thermal 

propulsion (liquid hydrogen) or even the highest performance chemical propulsion for the future 

exploration spacecraft14-17. Thus, dramatically reducing mission costs through smaller vehicles and 

increasing mission reliability and crew safety by shortening mission durations. In this while paper 

a scientific research campaign to achieve this transformative advancement in Space CFM is 

presented. It is anticipated that this research will be carried out by a consortium of universities and 

aerospace companies led by NASA. 

2. Scientific Rational & Motivation 

To realize this vision, the aerospace community has converged on a Zero-Boil-Off (ZBO) or 

Reduced Boil-Off (RBO) strategy18-23 for CFM of future space-based propellant storage and 

transfer technologies6-8,22. Unlike the short duration gravity-insensitive passive pressure control 

systems, used to date, the future ZBO and RBO pressure control strategies, will rely on a complex 

combination of active mixing and energy removal from the two-phase multi-component propellent 

system20,23-25 that is  governed by multiple interacting phase change and transport mechanisms that 

are significantly affected by the gravitational field24. The two past National Academy of Sciences 

Decadal Surveys26-27 have strongly emphasized the importance of scientific research in this area 

and recommended  that before a large and quite costly space demonstration of this complex 

technology can be successfully realized, a series of small-scale microgravity science experiments 

are needed to  provide direct and relevant high-fidelity data across the gravitational continuum: 

from high-g to 1g, and through partial-g to microgravity. These experiments must be focused on: 

(a) acquiring a sound scientific understanding of the impact of weightlessness on the intricate 

interplay between the governing two-phase physical mechanisms; 

(b) deriving empirical correlations for quantification of various transport and phase change 

mechanisms and their time constants in microgravity; 

(c) developing predictive two-phase computational fluid dynamics (CFD) models that are based 

on first principal physics together with empirically-based system level engineering models 

for rapid design calculations; and 

(d) comprehensive validation of the computational models against detailed measurements 

collected with state-of-the-art nonintrusive diagnostic techniques for whole-field velocity, 

temperature, and phase distributions.   



2 

2.1 Important Elements of Cryogenic Fluid Management in Space 

The future Cryogenic Fluid Management (CFM) operations of propellant tanks in Space can 

be divided into two broad categories: Propellant Storage and Propellant Transfer.28-31  

Propellant Storage: The most compelling storage issue is self-pressurization of the propellant 

tank caused by heat leaks that if left uncontrolled can lead to structural failure due to excessive 

pressure build-up32-33. Since the traditionally used continuous venting is not a viable option for 

long-duration storage, ZBO or RBO design strategies must be employed to control the self-

pressurization using active mixing and cooling25,28-30 to preserve the cryogen.  Storage is further 

complicated by the existence of noncondensable gases34 in the ullage that can impede pressure 

control29 and by liquid sloshing35-37, that is caused by sudden accelerations and can lead to 

ullage/pressure collapse and/or cavitation. Although the physical phenomena that influence 

ZBO/RBO tank pressure control are highly gravity-dependent, these processes have not been 

adequately assessed, tested, or attempted in microgravity. Finally, Liquefaction of the gaseous 

propellant is required for production of life support and propellant fluids through In-situ Resource 

Utilization (ISRU) in partial-gravity or even possibly in micro-gravity38. Liquefaction is affected 

by natural-convection, wall condensation, and film formation that are all gravity-dependent.   

Propellant Transfer: Propellant transfer with zero or near-zero cryogen loss is crucially 

important in space depot refueling operations and for routine engine start-ups28-30, 39. Since failure 

of transfer pumps is a concern, NASA is focusing on less risky autogenous40-42 or noncondensable 

gas pressurization43-45 of the donor tank in microgravity for liquid extraction. Donor tank 

operations are burdened by requirements of liquid-free venting and vapor-free liquid extraction 

using liquid traps, liquid acquisition devices (LAD)s and propellant management devices (PMD) 

that are not easily achievable for cryogens in Space due to their complex phase change and 

transport issues46-51. Finally, for tank-to-tank transfer both the support lines and the receiver tank 

must be cooled by sacrificing some of the cryogen to perform complex line and tank chill-down53-

54 followed by no-vent tank filling operations57-56 that involve gravity-dependent transitions 

between boiling regimes not adequately characterized in microgravity. 

2.2 Fundamental Physical Phenomena to be Investigated in Microgravity 

Propellant self-pressurization is governed by the intricate interactions between gravity-

dependent natural convection and the evaporation-condensation mass transfer processes at the 

phase front32-33,57-65. In microgravity, these interactions are more complicated as a 

moving/deforming interface responds to residual and transient accelerations, surface tension forces 

and capillary forces at the solid-liquid-vapor contact-line 66-69.  The stability of the interface can 

be suddenly disrupted due to liquid slosh caused by sudden transient accelerations with a grave 

possibility of tank depressurization and ullage collapse due to massive phase change70-73.  

These complications can be mitigated through active ZBO or RBO pressure control strategies 

involving mixing and cooling of the fluid. A prominent strategy is based on use of an intermittent 

forced subcooled jet flow25, 67-69, 74-79.  Microgravity jet mixing data is needed across a wide range 

of scaled parameters to characterize the time constants for tank pressure reduction, and the 

thresholds for geyser formation, its stability, and its penetration depth through the ullage,  

The low viscosity of the cryogenic fluids (e.g. hydrogen, oxygen, and methane) and the large 

dimensions of the storage tanks lead to turbulent natural and forced jet flows for typical, high-g, 

1-g, and partial-gravity applications and even for the depot-size tanks in microgravity65,71,75,78 . 

Both low-g (unsettled phases) and 1-g (settled phases) data are needed to develop semi-

mechanistic empirically-based law-of-interface turbulent models to correctly capture the effect of 

turbulence on the condensation and evaporation heat and mass transfer at non-stationary 

interfaces79-80.  

Active pressure control can also be accomplished via injection of subcooled liquid droplets 

through an axial spray-bar directly into the ullage81-84. Liquid injection can also be used to cool 
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down the tank wall before a charge-vent-hold filling operation56,85. Liquid disintegration into 

droplets, their physical transport and phase change across the ullage, their impingement on a hot 

wall leading to flash evaporation and complications caused by the Liedenfrost effects are all 

complex phenomena that have not been scientifically examined in microgravity85-87.  

Noncondensable gases (NCG)s are used as pressurants to extract liquid for engine operations 

and tank-to-tank transfer34,74,88-92. Due to reduced solutal convection in microgravity, NCGs can 

accumulate to create both a transport barrier34,74,88 and possibly a kinetic resistance89-90 at the 

liquid-vapor interface reducing the condensation rates significantly91-92. They can also instigate a 

unique and less understood class of Marangoni convection that is generated by partial pressures 

on the vapor side rather than by the thermal gradients in the liquid93-94. This may divert the cooling 

jet flow away from the interface. NCG effects will be both more pronounced and more readily 

revealed to be scrutinized in weightlessness. Ultimately, these effects may prevent the subcooled 

jet mixing to serve as a viable tank pressure control strategy91.  

In microgravity, the possibility of nucleate pool boiling at the wall is greatly enhanced due to 

the weakening of natural convection. Pressure spikes caused by pool boiling in a sealed tank may 

be large and explosive in microgravity endangering the tank’s structural integrity95-96. Despite 

recent microgravity experiments and theoretical treatments, pool boiling sublayer characteristics 

and regime transitions have not yet been adequately examined in the context of a sealed pressurized 

cryogenic fluid97-106. The same considerations also hold for flow boiling that is commonly 

encountered during propellant transfer processes where feedlines must be chilled down before 

transfer operation can be initiated52-54, 106-113.  

3. Recommendations for Future Multiple Platform Research Investigations 

Due to the wide range of gravity dependent phenomena that must be investigated, a campaign 

of multiplatform experiments, computational model development, and diagnostic techniques is 

recommended and described below. 

3.1. Small Scale Simulant Fluid Storage & Transfer Experiment Series on ISS 

A comprehensive series of small-size (~10 cm diameter), transparent, simulant-fluid science 

experiments are recommended below that can be fitted into the Microgravity Science Glovebox 

(MSG) or the Fluids Integrated Rack (FIR) aboard the ISS. The simulant fluids experiments are 

less costly to develop and easier to perform due to their near room temperature boiling points. 

Moreover, because of their transparency, they can benefit from a range of readily available 

nonintrusive whole-field scientific diagnostics for computational model validation. The objective 

of these experiments will be to answer the following fundamental science questions based on a 

series of hierarchical experiments.  

I. Self-Pressurization & Jet Mixing Experiment  

(a) What are the stationary and transient self-pressurization and thermal stratification rates in 

microgravity? (b) How is the self-pressurization rate affected by sudden acceleration? (c) Can 

liquid sloshing lead to rapid depressurization and ullage collapse? (d) What are the jet-ullage 

interactions under laminar, transitionary, and turbulent regimes? (e) What are the geyser 

penetration depths and stability criteria in microgravity for low, medium, and large Weber numbers? 

(f) What are the thermal destratification/depressurization rates during subcooled jet mixing? (d) Is 

ZBO control of tank pressure feasible using mixing or subcooled mixing? (h) Can ZBO subcooled 

mixing pressure control lead to depressurization cavitation?   

II. Noncondensable Gas (NCG) Effects Experiment  

(a) What are the transport and kinetic effects of non-condensable gases on condensation and 

associated depressurization? (b) What is the effect of the diffusive transport barrier at the 

liquid/vapor interface? (c) What is the impact of non-condensable gasses on condensation mass 

transfer by penetrating the Knudsen layer? (d) Can NCGs instigate a unique partial pressure driven 
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Marangoni convection? (e) Will the Marangoni convection be able to divert the liquid jet away 

from the interface? (f) Do noncondensable gases lead to cavitation at screens or hot spots in 

microgravity? (g) Is axial jet mixing a viable depressurization strategy in presence of NCGs? 

III. Droplet Phase Change Pressure Control Experiment 

(a) How is liquid atomization/disintegration different in 0g? (b) How is transport and residence 

time of droplet across the ullage affected by weightlessness? (c) What is the effect of droplet 

evaporation on tank pressure? Is it affected by non-condensable gases? (d) How is droplet-wall 

and droplet-interface interaction modified in 0g? (f) What are the pressure and heat transfer effects 

of flash vaporization on the walls? (g) Is the Leidenfrost effect strong enough to propel droplets 

away from the wall in 0g? (h) How are wall condensation and film formation different in 0g? 

IV. Ventless Tank-to-Tank Transfer Experiments  

Donor Tank: (a) What are the implications of bubble point pressure under isothermal conditions 

for a screen-mesh LAD? (b) Do heat transfer conditions affect LAD vapor breakthrough in 

microgravity? (c) What are the criteria for LAD failure in microgravity during liquid extraction?  

Receiver Tank: (a) How are bubble nucleation, growth, sliding, and departure frequency and 

diameter different during nucleate pool boiling in microgravity (b) What are the pool boiling 

regimes and transitions during tank chilldown? c) What are the stability criteria for isothermal/non-

isothermal single-phase/two-phase tank filling? (d) What are the integrated system level dynamics 

of a two-phase two-tank system in microgravity? 

Transfer line Flow Boiling: how are the flow boiling regimes transitions during line chill down 

affected by microgravity? 

3.2. Medium-Scale Cryogenic Storage & Transfer Experiment on a Free-flyer Platform 

Although the fundamental transport and phase change phenomena are the same for simulant 

and cryogenic fluids, establishing complete similitude between cryogenic and simulant fluid 

experiments will be difficult due to the existence of the numerous dimensionless scaling 

parameters. Thus, to anchor the numerical models across fluid types and dimensional scales for 

greater and more precise fidelity and for ultimately incorporating the experimental results into 

future propellant tank design, it is imperative to conduct the counterparts of Experiments I to IV 

above in a scaled-up version (~ 0.50 meter diameter tank) using a moderate range cryogenic fluid 

such as LN2 or LCH4. This is can be accomplished by a single comprehensive medium-scaled 

cryogenic experiment performed either connected externally to ISS or on a Free-flyer platform. 

3.3 Ground-Based 1G and Reduced-Gravity Experiments  

Ground-based investigations and short duration reduced gravity facilities can still be used to 

significant advantage, for complimenting the ISS/Free-flyer research in a cost-effective manner:  

• 1G investigations: Pre- or Post-flight experiments corresponding to flight test matrices for 

anchoring model validation; interfacial turbulence investigations,  

• Drop Tower: jet-ullage geyser penetration, contact line dynamics, and cavitation experiments,  

• Suborbital/Sounding Rocket: Liquid traps, LADs, PMDs, mass gauging, partial-g liquefaction. 

4. State-of-the-Art CFD and System-Level Model Development & Validation 

Development of validated computational models that can simulate the performance of 

propellant tanks in microgravity is an area of particular interest and focus. These models can 

accelerate the design and scaleup of the future propellant systems by eliminating the inefficient 

design-build-test-fail-redesign cycles, resulting in lower costs, reduced risks, and earlier 

exploration missions.  These models will also prove indispensable for identifying the causes of 

future malfunctions that may occur during depot or spacecraft tank operations and will help in 

devising engineering countermeasures and remedies for their recovery.  

The computational models should be able to solve the flow, energy, mass, and species 

equations under conditions of separated bulk phases such as an ullage-liquid system in a sealed 

tank or for interpenetrating phases that occur during the complex boiling and condensation regimes 
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encountered in microgravity. It is recommended for these models to be developed by incorporating 

in-house formulated User-Defined-Functions (UDF)s or submodels into the framework of 

industry-standard or open source CFD codes such as Ansys-Fluent, Star-CM, Flow-3D or 

OpenFoam. In this manner, the CFD codes will be enhanced effectively through inclusion of the 

missing or neglected physics by submodels that are developed and validated by the PI Teams. But 

once distributed for use by third parties, the model/code can enjoy the benefits of independent and 

strong user support provided by the software/code companies or by the open source communities. 

This approach can transform the way NASA and industry develop future transportation systems.  

Three classes of computational models are envisioned.  

I. Two-Phase CFD Models for Separated Phases: These include 3D CFD schemes that use 

interface capturing techniques, such as Volume of Fluids (VOF)114 and Level Set (LS)115 methods, 

to track the evolving and deforming liquid vapor interface and  Discrete Particle Methods 

(DPM)116 that track droplets and bubbles in microgravity with little empirical-based inputs.  

II. Multi-Fluids CFD Models for Interpenetrating Phases: 3D Multi-fluids methods117-118 

are needed to capture the complicated interpenetrating phases. These models combine a first 

principle framework and formulation with empirical inter-phase/inter-fluids closure laws to deal 

with quite complex fluid type transitions involving such phenomena as wall boiling, bubbly flows, 

mist flows, and etc. These models require a dedicated set of associated experiments in microgravity 

to provide the inter-phase closure correlations with fidelity.  

III. System-Level 1-D Models for Integrated Tank -to-Tank System Design:  Simulations 

of CFM processes during full mission scenarios are only possible through temporal and spatial 

couplings between the computationally intensive 3D CFD models and the more agile 1D system 

level models. The existing nuclear industry multiphase system-level codes119 such as RELAP 

(Reactor Excursion and Leak Analysis Program)120, from the Idaho National Laboratory, can be 

used to this end with great advantage. But it must be extensively customized for propellant tank 

CFM applications with correlations derived from microgravity fluids experiments recommended 

for this campaign.   

5. Development of State-of-the Art Scientific Diagnostics for Cryogenic Fluids 

For transparent simulant fluids, The ZBOT-1 experiment underscored the value of the Digital 

Particle-Imaging-Velocimetry (DPIV) diagnostics in revealing the detailed vortex structures and 

jet flow behavior in microgravity which guided the model development/validation process75. 

Quantum Dot Thermometry (QDT) is currently under development for full field temperature 

measurements in the follow-on ZBOT-NC Experiment121-126. It is imperative that a serious 

undertaking be also devoted for the development of advanced whole-field mapping of temperature, 

velocity, and phase distributions for candidate cryogenic fluids such as nitrogen and methane127-

128. These tools are needed to elevate the microgravity experiments to the level of precision enjoyed 

by ground-based investigations focused on fundamental fluid physics discovery.   

6. Closure 

This whitepaper presented a comprehensive multiplatform microgravity research campaign for 

creating the much-needed scientific foundation for the development of transformative cryogenic 

propellant storage and transfer space technologies.  A tentative schedule of the experiments to be 

carried out by BPS is presented at the link below (Ctrl + Click here). Due to the important 

applications of the scientific findings, it is hoped that this research can take place with close 

coordinations between NASA BPS and STMD and between NASA and Department of Energy so 

that the scientific findings and computational models can get infused from early on into 

technologies that promote future exploration in Space and the future hydrogen energy economy 

on Earth.     
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