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Abstract: The accelerating expansion of the universe and galaxy rotation curves, which are

described by dark energy and dark matter, could be related to a modification of gravity on large

scales. As ground-based tests of Newtonian inverse square law of gravity are affected by the Earth

gravity and terrestrial noise, it is essential to perform these experiments in spaceborne laboratories

using drive and test masses isolated from any terrestrial and seismic noise. In-situ micro-gravity

measurements of the inverse square law will help us comprehend better gravitational phenomena

at different scales.
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Introduction – Contemporary discoveries of the accelerating expansion of large-scale structures

[1–3] and the radial velocity profiles of spiral galaxies [4–7] are in contraction to the assumptions

of Newtonian gravity. Although these observations are widely ascribed to dark energy [8–11] and

dark matter [12–15] in the ΛCDM standard model of cosmology, they could also be explained

by a modification of the gravitational laws in the low-energy (infrared) limit on large scales

(see e.g. [16–18]) such as theories of massive gravity (see reviews by [19, 20]), which could

be analogous to the electromagnetic behaviors in the superconducting phase formulated by the

Maxwell–Proca equations of massive photons [21, 22]. In particular, it is theoretically possible to

map a 4-dimensional Yang-Mills theory onto a gravitational theory in 4 + 1 spacetime based on

the holographic principle [23, 24] and gauge/gravity duality [25–27]. Thus, we may also have

a geometric counterpart of the Brout-Englert-Higgs (BEH) mechanism [28–30] of Yang-Mills

theories that could lead to a massive gravity in the infrared completion [31–33].

The theory of general relativity, which is considered as the most acceptable geometric

description of gravity, has been confirmed in several observations, such as recent detections of

gravitational waves from merged compact binaries [34–37], and very-long-baseline interferometry

reconstructed imaging of a supermassive black hole [38]. Moreover, general-relativistic frame-

dragging effects (see e.g. [39–41]) were also measured by two artificial satellites orbiting the

Earth [42], and observations of a binary system [43]. Several ground-based experiments have

also validated the equivalence principle [44–48] and Newtonian inverse square law at various

scales [49–53]. While general relativity is found to accurately describe gravitational phenomena

in the high-energy limit around compact objects, Newtonian gravity is still valid in our Earth-

based everyday experiments. Nowadays, recent technological advancements allow us to precisely

measure the inverse-square law of gravity at µm scales, which were not previously possible in

the experiment performed by Henry Cavendish [54] in the 18th century. Several Earth-bound

experiments of Newton’s inverse square law (for example, see Fig. 1) have been carried out

with small test and drive masses [51–53, 55–57]. However, the accuracy of our ground-based

measurements is limited by the Earth gravity and seismic noise, which make it extremely difficult

to reach a conclusive finding about gravitational interactions between small source masses at short

scales in the low-energy situation. We do not know whether general relativity is still valid on

cosmological scales of galaxies and on µm scales in µ-g empty spaces in the low-energy limit.

Departure from Newtonian gravity – When Newton’s inverse square law of gravity was

introduced in 1687 [58], no experiment has been performed to verify it until the Cavendish

experiment in 1797 [54]. Newton’s inverse square law is described by

FN(r) = GN

m1m2

r2
, (1)

where FN is the Newtonian gravitational force acting between two masses m1 and m2 separated

by distance r, and GN is the Newtonian gravitational constant.

A possible departure from Newtonian gravity was proposed by Fujii in 1971 [59] by assuming

a dilaton-meditated gravitational force below a short distance rN:

F (r) =
3

4
GN

m1m2

r2

[

1 +
1

3
e−r/λ (1 + r/λ)

]

, (2)

where λ is an interaction range for the dilaton-type field. Newtonian gravity recovers at large
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Figure 1: Schematic of the gravitational inverse square law experiments. Left Panel: The torsion-balance Cavendish-

type experiment conducted by Ref. [57]. Right Panel: Yukawa-type force cantilever-based measurement performed

by Ref. [55] using a gold test mass on a cantilever above a drive mass consisting of a gold meander pattern inside a

silicon substrate. Thick conductive Faraday shields suppress electric couplings.

distances λ ≫ rN. Following Fujii’s proposal, some laboratory experiments have been performed

to find a dependence of the gravitational constant on r between two masses [60].

A generalized from of Fujii’s expression is given by a Yukawa-type gravitational force (see

reviews by [50, 61, 62]) as follows:

F (r) =
1

1 + α
GN

m1m2

r2
[

1 + αe−r/λ (1 + r/λ)
]

, (3)

where λ is the Yukawa range written as λ = ~/(mGc), α is the Yukawa dimensionless parameter

associated with the strength of the modified gravity with respect to Newtonian gravity (note α =
1/3 yields Fujii’s expression), and mG is the graviton mass. If the graviton acquires mass through

a Higgs-like mechanism in the infrared (low-energy) limit (see e.g. [31–33, 63]), the gravitational

force takes the Yukawa-type form of Eq. (3), whereas Newtonian gravity of Eq. (1) is still valid in

the ultraviolet (high-energy) limit (mG → 0).

Additionally, a power-law gravitational force modified by arbitrary powers N has also been

suggested [64]:

F (r) =
1

1 + αN

GN

m1m2

r2

[

1 + αNN
(r0
r

)N−1
]

, (4)

where αN is a dimensionless constant, and r0 is the length scale of a non-Newtonian force. For

example, the simultaneous interactions through two massless scalar and two massless pseudoscalar

particles are produced using N = 2 and 3, respectively. In the limit N → 1, one obtains the

Newtonian gravitational force of Eq. (1).

Considering the Yukawa-type gravitational force described by Eq. (3), the departure from

Newtonian gravity can be characterized by only the two parameters: the Yukawa range λ and

dimensionless parameter α. Various constraints on the Yukawa parameters on large scale (λ ≥
10−3 m) from laboratory, geophysical measurements, Earth-LAGEOS-Lunar experiments, lunar-

laser-ranging (LLR) measurements, and planetary observations were summarized by Ref. [61]
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Figure 2: Constraints on the Yukawa dimensionless parameter (|α|) versus the Yukawa range (λ) at long ranges

(λ > 10−3 m; left panel), medium (10−6 < λ < 10−2 m; left panel), and short (λ < 10−6 m; right panel), from [50].

(Chapter 2), which is shown in Figure 2 (left panel; included in the review by [50]). We should

note that the lunar orbit precession is due to perturbations from Earth and other solar planets,

and a small fraction owing to general relativity. The results from medium-range experiments

(10−6 < λ < 10−2 m) are also given in Figure 2 (middle panel). 95%-confidence level constraints

on λ and α from 1 nm to 10µm are also presented in the right panel of Figure 2, where the departure

from Newtonian gravity strongly follows a power-law modification expressed by Eq. (4).

Figure 1 shows the two recent different setups of gravitational inverse square law experiments at

short ranges performed using: (1) a Cavendish-type torsion experiment [57], and (2) a cantilever-

based experiment instead of torsion balances [55]. In the first experiment [57], they measured

gravitational interaction between two gold balls of 1 mm radius and sub-100-milligram mass.

This experiment is a first step towards quantum measurements of gravity between sub-mm-sized

masses of 10−13 gram using current quantum sensing technologies (see e.g. [65, 66]). In the

second experiment [55], they build an apparatus for cantilever-based experiments to measure

attonewton-scale gravitational interaction between gold drive and test masses separated by 25 µm.

This experiment, which was implemented by a gold test mass on a cantilever over a drive mass

made by a gold meander pattern inside a silicon substrate, puts new constraints on the parameter

space of λ–α of Yukawa-type deviations from Newtonian gravity in the range of 6–20µm (see

Fig. 16 in [55], compared to Figure 2 middle). This kind of cantilever-based experiments can

provide new constraints for quantum gravity and graviton mass. However, the most sensitive

Earth-based Cavendish-type experiments are still limited by seismic and terrestrial noise, so

space-based experiments should definitely provide us with a much better sensitivity level.

Proposed micro-gravity drag-free experiments – Future short-range measurements of the

inverse square law of gravity in the µg environment will improve our constraints on the λ–α
parameter space, which allow us to constrain Yukawa-type and power-law modifications of gravity

specified by Eqs. (3) and (4), and finally gravitational interaction on various scales. Currently,

on-ground experiments are contaminated by the Earth gravity and seismic noise. In particular,

Cavendish-type torsion experiments are affected by mechanical and thermal noise from the hanging

wire or fiber, while cantilever-based experiments could also include some thermal noise from

cantilevers. In the micro-gravity environment without the Earth gravity, there is no need for
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wire, so one could precisely measure gravitational interactions between small masses at smaller

ranges. Space-based inverse square law experiments offer new possibilities to detect a deviation

from Newtonian gravity on small scales in a drag-free satellite in the micro-gravity environment.

Currently, a similar proposed spaceborne experiment known as STEP (Satellite Test of the

Equivalence Principle) [67] is under development for very sensitive gravitational research that will

examine the equivalence principle with a sensitivity level at five orders of magnitude better than the

ground-based one. This experiment in a drag-free satellite is entirely free from terrestrial sources

of noise such as seismic effects. As the micro-gravity environment has less noise owing to gas

pressures, cryogenic technologies can also be employed in experiments, such as a Superconducting

Quantum Interference Device (SQUID) position detector. Previously, a spaceborne satellite

for searching deviations from Newtonian gravity named SEE (Satellite Energy Exchange) was

proposed in 1992 [68–70], which was aimed at testing both the equivalence principle and inverse

square law of gravity. In addition to STEP and SEE, other spaceborne experiments have been

proposed prior to 1992 for exploring deviations from Newtonian gravity [71–76], which have also

been argued for the absence of terrestrial noise in space-based measurements. However, none of

them have been deeply studied and developed later, except for the STEP experiment.

The methods and concepts developed and studied for the STEP experiment [67], together with

new technologies recently developed for ground-based experiments (e.g. [51–53, 55, 57]) can help

us design a practical spaceborne apparatus for measurements of the gravitational inverse square

law in the µg environment inside a drag-zero satellite. All the setups and technologies utilized in

ground-based experiments have been reviewed by Ref. [62] (in Section 5).

Conclusion – In summary, we have proposed to consider practical spaceborne experiments for

constraining deviations from Newtonian gravity on short scales. This experiment can help us

search for non-Newtonian gravity that provides new insights into gravitational phenomena on

various scales. The proposed micro-gravity short-range measurements of the inverse square law

will prepare us for verifying different theories of modified Newtonian gravity such as massive

gravity on large scales, where our observations of galactic-scale structures are currently supposed

to be made by dark energy and dark matter in the ΛCDM cosmological model.

If our future spaceborne experiments reveal a deviations from Newton’s inverse square law at

a short range, we should investigate whether it is associated with extra dimensions or a massive

graviton. It will also be required to examine whether the equivalence principle is still valid at

such a short range. Moreover, it will be essential to test the inverse square law on large scales.

As proposed by Ref. [77], the Laser Interferometer Space Antenna mission (LISA; planned to

be launched in 2034) should be able to test a Yukawa-type gravity of massive gravity at a scale

of 6 × 1019 m using gravitational waves (GW) produced by inspiraling super-massive black hole

binaries. Moreover, GW in massive gravity could also carry three extra polarization modes (two

vectors and one scalar; see e.g. [78]), in addition to two tensorial polarization modes tensors

predicted by general relativity (see also discussion by [63]). These three extra GW polarization

modes can be detected using 3-arm space-borne GW detectors such as the LISA. Thus, future

spaceborne measurements of the inverse square law and GW observations by the LISA will

enhance our understanding of gravity on short and large scales.
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[65] U. Delić, M. Reisenbauer, K. Dare, et al. 2020. “Cooling of a levitated nanoparticle to the motional quantum

ground state,” Science, 367, 892. doi:10.1126/science.aba3993.

[66] F. Tebbenjohanns, M. Frimmer, V. Jain, et al. 2020. “Motional Sideband Asymmetry of a Nanoparticle Optically

Levitated in Free Space,” Phys. Rev. Lett., 124, 013603. doi:10.1103/PhysRevLett.124.013603.

[67] T. J. Sumner, J. Anderson, J. P. Blaser, et al. 2007. “STEP (satellite test of the equivalence principle),” Adv. Space

Res., 39, 254. doi:10.1016/j.asr.2006.09.019.

[68] A. J. Sanders and W. E. Deeds. 1992. “Proposed new determination of the gravitational constant G and tests of

Newtonian gravitation,” Phys. Rev. D, 46, 489. doi:10.1103/PhysRevD.46.489.

[69] A. J. Sanders, A. D. Alexeev, S. W. Allison, et al. 1999. “Project SEE (Satellite Energy Exchange): proposal for

space-based gravitational measurements,” Meas. Sci. Technol., 10, 514. doi:10.1088/0957-0233/10/6/317.

[70] A. J. Sanders, A. D. Alexeev, S. W. Allison, et al. 2000. “Project SEE (Satellite Energy Exchange):

an international effort to develop a space-based mission for precise measurements of gravitation,”

Class. Quant. Grav. , 17, 2331. doi:10.1088/0264-9381/17/12/305.

[71] A. M. Nobili, A. Milani, and P. Farinella. 1987. “Testing Newtonian gravity in space,” Phys. Lett. A, 120, 437.

doi:10.1016/0375-9601(87)90105-8.

[72] A. M. Nobili, A. Milani, and P. Farinella. 1988. “The Orbit of a Space Laboratory for the Measurement of G,”

Astron. J., 95, 576. doi:10.1086/114657.

[73] M. P. Silverman. 1987. “Satellite test of intermediate-range deviation from Newton’s law of gravity.”

Gen. Rel. Grav., 19, 511. doi:10.1007/BF00760655.

[74] R. A. Wharton, C. P. McKay, R. L. Mancinelli, et al. 1989. “Experimental gravitation in space: Is there a future?”

Adv. Space Res., 9, 147. doi:10.1016/0273-1177(89)90221-4.

[75] A. D. A. M. Spallicci. 1990. “Orbiting test masses for an equivalence principle space experiment,”

Gen. Rel. Grav., 22, 863. doi:10.1007/BF00763227.

[76] D. Bramanti, A. M. Nobili, and G. Catastini. 1992. “Test of the equivalence principle in a non-drag-free

spacecraft,” Phys. Lett. A, 164, 243. doi:10.1016/0375-9601(92)91099-D.

[77] C. M. Will. 1998. “Bounding the mass of the graviton using gravitational-wave observations of inspiralling

compact binaries,” Phys. Rev. D, 57, 2061. doi:10.1103/PhysRevD.57.2061.

[78] J. M. Ezquiaga and M. Zumalacárregui. 2018. “Dark Energy in light of Multi-Messenger Gravitational-Wave

astronomy,” Front. Astron. Space Sci., 5, 44. doi:10.3389/fspas.2018.00044.

8

https://doi.org/10.1103/PhysRevLett.108.081101
https://ui.adsabs.harvard.edu/abs/2012PhRvL.108h1101Y
https://doi.org/10.1103/PhysRevLett.108.081101
https://doi.org/10.1103/PhysRevLett.116.131101
https://ui.adsabs.harvard.edu/abs/2016PhRvL.116m1101T
https://doi.org/10.1103/PhysRevLett.116.131101
https://books.google.com/books?id=O58mAAAAMAAJ&pg=PA59#v=onepage&q&f=false
https://doi.org/10.1103/PhysRevD.72.122001
https://ui.adsabs.harvard.edu/abs/2005PhRvD..72l2001S
https://doi.org/10.1103/PhysRevD.72.122001
https://doi.org/10.1103/PhysRevD.77.062006
https://ui.adsabs.harvard.edu/abs/2008PhRvD..77f2006W
https://doi.org/10.1103/PhysRevD.77.062006
https://doi.org/10.1038/s41586-021-03250-7
https://ui.adsabs.harvard.edu/abs/2021Natur.591..225W
https://doi.org/10.1038/s41586-021-03250-7
https://doi.org/10.1038/physci234005a0
https://ui.adsabs.harvard.edu/abs/1971NPhS..234....5F
https://doi.org/10.1038/physci234005a0
https://doi.org/10.1103/PhysRevD.9.850
https://ui.adsabs.harvard.edu/abs/1974PhRvD...9..850L
https://doi.org/10.1103/PhysRevD.9.850
https://doi.org/10.1088/0264-9381/32/3/033001
https://ui.adsabs.harvard.edu/abs/2015CQGra..32c3001M
https://doi.org/10.1088/0264-9381/32/3/033001
https://doi.org/10.1142/S0218271821420219
https://ui.adsabs.harvard.edu/abs/2021arXiv210905148D
https://doi.org/10.1142/S0218271821420219
https://doi.org/10.1103/PhysRevD.64.075010
https://ui.adsabs.harvard.edu/abs/2001PhRvD..64g5010F
https://doi.org/10.1103/PhysRevD.64.075010
https://doi.org/10.1126/science.aba3993
https://ui.adsabs.harvard.edu/abs/2020Sci...367..892D
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1103/PhysRevLett.124.013603
https://ui.adsabs.harvard.edu/abs/2020PhRvL.124a3603T
https://doi.org/10.1103/PhysRevLett.124.013603
https://doi.org/10.1016/j.asr.2006.09.019
https://ui.adsabs.harvard.edu/abs/2007AdSpR..39..254S
https://doi.org/10.1016/j.asr.2006.09.019
https://doi.org/10.1103/PhysRevD.46.489
https://ui.adsabs.harvard.edu/abs/1992PhRvD..46..489S
https://doi.org/10.1103/PhysRevD.46.489
https://doi.org/10.1088/0957-0233/10/6/317
https://ui.adsabs.harvard.edu/abs/1999MeScT..10..514S
https://doi.org/10.1088/0957-0233/10/6/317
https://doi.org/10.1088/0264-9381/17/12/305
https://ui.adsabs.harvard.edu/abs/2000CQGra..17.2331S
https://doi.org/10.1088/0264-9381/17/12/305
https://doi.org/10.1016/0375-9601(87)90105-8
https://ui.adsabs.harvard.edu/abs/1987PhLA..120..437N
https://doi.org/10.1016/0375-9601(87)90105-8
https://doi.org/10.1086/114657
https://ui.adsabs.harvard.edu/abs/1988AJ.....95..576N
https://doi.org/10.1086/114657
https://doi.org/10.1007/BF00760655
https://ui.adsabs.harvard.edu/abs/1987GReGr..19..511S
https://doi.org/10.1007/BF00760655
https://doi.org/10.1016/0273-1177(89)90221-4
https://ui.adsabs.harvard.edu/abs/1989AdSpR...9i.147W
https://doi.org/10.1016/0273-1177(89)90221-4
https://doi.org/10.1007/BF00763227
https://ui.adsabs.harvard.edu/abs/1990GReGr..22..863S
https://doi.org/10.1007/BF00763227
https://doi.org/10.1016/0375-9601(92)91099-D
https://ui.adsabs.harvard.edu/abs/1992PhLA..164..243B
https://doi.org/10.1016/0375-9601(92)91099-D
https://doi.org/10.1103/PhysRevD.57.2061
https://ui.adsabs.harvard.edu/abs/1998PhRvD..57.2061W
https://doi.org/10.1103/PhysRevD.57.2061
https://doi.org/10.3389/fspas.2018.00044
https://ui.adsabs.harvard.edu/abs/2018FrASS...5...44E
https://doi.org/10.3389/fspas.2018.00044

