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ABSTRACT:

We propose a clock-comparison space mission with two clocks on board, in orbits
near the Sun, to search for an ultralight dark matter halo bound to the Sun, partly
motivated by the NASA Deep Space Atomic Clock and Parker Solar Probe. We show
that the projected sensitivities of space-based clocks exceed the reach of Earth-based
clocks by orders of magnitude, probing dark matter motivated by the naturalness of
the Higgs mass. Another primary goal of our proposal is to test the potential spatial
variations of fundamental constants, improving the Earth-based limits by two orders
of magnitude.
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1 Introduction

In this proposal, we present an exciting new avenue of probing ultralight dark matter
with future high-precision atomic, molecular, and nuclear clocks in space, and testing
the spatial variation of fundamental constants [1]. The oscillations of the ultralight
dark matter field can induce a time-varying contribution to fundamental constants,
including the electron mass and fine-structure constant [2, 3]. Exceptional enhance-
ments of dark matter density that can be enabled by the bound halos present an
opportunity for direct dark matter detection with clocks [4, 5.

Space quantum technologies provide near-future crucial applications, including
linking Farth optical clocks [6], the auto-navigation of spacecraft [7], secure quantum
communications [8], and relativistic geodesy [9]. The NASA Deep Space Atomic
Clock (DSAC) mission and other recent missions |7, 10| have demonstrated significant
stability, with a factor of 10 or better improvements over previous space-based clocks.
Missions such as the NASA Parker Solar Probe (PSP) show the viability of space
missions in orbits close to the Sun [11].

We propose a clock-comparison space mission with two clocks on board to search
for a dark matter halo bound to the Sun. We show that the projected sensitivity of
space-based clocks for detecting Sun-bound dark matter halo exceeds the reach of
Earth-based clocks by orders of magnitude. We consider the projected bounds for
the existing cutting-edge clocks, as well as the novel nuclear and molecular clocks
under development.

Another primary goal of this proposal is to test the spatial variations of funda-
mental constants under the change in the gravitational potential [12, 13]. We show
that using space-based quantum clocks, one can improve the precision by two orders
of magnitudes for this measurement in comparison to similar tests on Earth [13].

2 Solar System Halos

Ultralight dark matter (ULDM), with particle mass m, in the range 1072? eV< my <
eV, is a compelling solution to the dark matter problem of our universe [14-16].
ULDM states bound to objects in the solar system are an intriguing possibility, with
possible large enhancements to the local dark matter density that could allow more
weakly-coupled ULDM candidates to be potentially detectable [4, 5, 17]. Further-
more, these bound objects are typically much colder (lower energy per particle) than
the background density of dark matter, implying a longer timescale of coherent os-
cillations that is also advantageous to experimental searches. There are hints in the
literature that such bound states should form, both from numerical simulations of



ULDM halos [18] as well as studies of adiabatic contraction during star formation
[17]. Current constraints on these bound states arise from local gravity measure-
ments, including solar system ephemerides [19].

In this proposal, we study the scenario of ULDM particles bound to the sun, in a
bound state sometimes referred to as a ULDM solar halo. We focus on the prospect
of a future space quantum clock mission to probe a high-density ULDM solar halo
around the Sun, with the unique possibility of discovery for solar halos with radius
< 1 AU, which would not be possible in terrestrial searches [4].

3 Quantum Clock Searches for Ultralight Dark Matter

Ultralight dark matter gives rise to novel oscillatory signals in atomic physics systems,
including clocks [2-5|. These signals arise from couplings to the Standard Model
particles, and can be parameterized by

(o) ~ o (L + dp.kd),  a(p) ~ ag(l—dyko)
( AQSD) (6) ~ ( AQSD)O (1~ dyso), (31)

where p1, a, and m,/Aqcp are the electron-proton mass ration m./m,, fine-structure

constant, and quark mass m, relative to the Quantum Chromodynamics (QCD)
energy scale Aqcp (respectively), and k = 4r/Mp with Mp = 1.2 x 10 GeV
the Planck mass. The interaction strength is dictated by the dimensionless coupling
constants d,,,, (for ULDM coupling to electrons), d, (for coupling to photons), and
d, (for coupling to gluons), as well as the field value ¢, which oscillates around a
central value ¢, at a fixed frequency proportional to the ULDM particle mass m.
The field value ¢ is dictated by the ULDM density p at the position of the exper-
iment, as ¢g = \/2p/my. Typically it is assumed that the local density is dictated
by the spherical dark matter halo distribution, virialized in the Milky Way galaxy,
which implies p = piocal = 0.4 GeV/cm?. However, large dark matter overdensities in
the solar system are possible, and consistent with all known constraints, when the
dark matter is gravitationally bound to the Sun (see Section 2) [4, 5|. For terrestrial
searches, the direct constraints imply that p < 10%pjeea at most, but the constraints
are much weaker when considering orbits much nearer to the Sun than 1 AU, which
implies the potential to probe even smaller values of the coupling constants d,,,,
do, and d, (defined above) than would be possible with a terrestrial search. In our
estimation, we use the complete set of local constraints, as outlined in [1].

4 Sensitivities from Atomic, Molecular, and Nuclear Clocks

To detect ultralight dark matter with high-precision clocks, one measures a frequency
ratio of two clocks with different sensitivities to the variation of fundamental con-



stants over a period of time [2]. The discrete Fourier transform of the resulting time
series then allows the extraction of a peak at the dark matter Compton frequency,
with an asymmetric lineshape [2, 20, 21]. If such a signal is not detected, one can
obtain limits on the dark matter parameter space. It is also possible to carry out
such a measurement with a single clock by comparing the frequency of atoms to the
frequency of the local oscillator (i.e., cavity) [22, 23|. For further details, see [1].

The coupling constants d,,., d, and d, in Eq. (3.1) can be probed using different
clock technologies. It is important to note that detection of the signal proposed
here would require a pair of co-located clocks on a space probe, although a wide
variety of clocks could be selected for this purpose. A detailed discussion of possible
mission clocks can be found in [1]. In brief, on the basis of the present literature, an
optical, molecular, or nuclear clock would each be well-suited to one or more of these
couplings. Molecular or optical clocks can realistically achieve a future sensitivity
to oscillations on the order of (§X/X)exp =~ 10718, with X = p, a [24-27], whereas
a future nuclear clock may be capable of achieving (6X/X )ex, =~ 1072 for X = q,
mq/AQCD [28, 29]

5 Estimation of the Sensitivity Reach

Using the benchmarks described above (see [1] for further details), we can estimate
the sensitivity of a future space-based atomic clock to oscillating ULDM signals. In
Figure 1, we illustrate the potential sensitivity to coupling constants d,,, (panel a), d,
(b), and d, (c). In panels (a) and (b), we estimate the experimental reach assuming a
sensitivity to oscillation of fundamental constants at the level of (6.X/X )¢y, = 10715
(solid lines) or 1078 (dashed lines) (with X = p, ), which are achievable in near-
future terrestrial clock systems [24-27] and could be optimized for a space mission.
In panels (b) and (c), we also include a projection for a nuclear clock with sensitivity
at the level of (0X/X)exp, = 1072 for X = a,m,/Aqcp [28, 29]. The gray and
yellow shaded regions represent contraints from equivalence principle tests [31-33]
and atomic physics probes of the local dark matter density ppys |3, 23, 34, 35]
(respectively).

For each of the three couplings considered, we observe in Figure 1 that a clock
mission in some inner solar orbit can achieve a very high degree of sensitivity to
ULDM signals. The sensitivity is greatest in the range 107'* eV< m, < 3 x 10713
eV, and has the potential to probe well-motivated theory targets, below the burgundy
and green lines, motivated by naturalness and by relaxion theories |36, 37].

6 Spatial Variation of Fundamental Constants

Variations of fundamental constants can also be tested by a clock-comparison exper-
iment in an inner solar orbit, due to the change in the gravitational potential. Such
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Figure 1. Estimated sensitivity reaches for ultralight dark matter bound to the sun,

using couplings described in Eq. (3.1). The blue, red, and black denote sensitivity for
probes at the distance of 0.1 AU, probes at the orbit of Mercury, and for terrestrial clocks,
respectively; note that distances of » < 0.1 AU have already been reached by the NASA
Parker Solar Probe (PSP) mission, reaching 0.06 AU on its most recent perihelion and
aiming to reach 0.045 AU at its closest approach [30]. We illustrate the projected bounds
for the variations of the electron-proton mass ratio p (panel a), the fine structure constant
a (panel b), and ratio mq/Aqcp (panel ¢). The thick (dashed) lines correspond to assumed
experimental sensitivity of 1071° (107!®) for panels (a) and (b). The dotted lines in panels
(b) and (c) represent the projection for a clock-comparison experiment at the 10719 level
involving a nuclear clock and assuming a 10* sensitivity factor [29].



new physics is usually parameterized as [12, 13|

, 0X
XU’

kx =c (6.1)
with X = «, p, or my/Agep, and 6U is the change in gravitational potential between
the positions of two clock measurements. Such experiments are referred to as “null”
experiments in [38|, and essentially measure differential redshift. Monitoring ratio of
clocks as the satellite moves deeper in the solar system can set constrain ky, via the
relation (kx) e, = (0X/X) ., ¢*/0U.

The current constraints on kx arise from studies that utilize the seasonal vari-
ation of Earth’s orbital distance to the Sun, where the variation of gravitational
potential is on the order of 6U/c* ~ 3.3 x 1071 [13]. On the other hand, a space
probe at a distance of 0.1 AU would see a change in potential of §U/c? ~ 9 x 1078,
relative to 1 AU. This implies that a space quantum clock with the same intrinsic un-
certainty on measuring 0.X/X can more strongly constrain ky, by a factor of nearly
300, relative to terrestrial clocks (barring additional systematic uncertainties).

Our present proposal does not require an optical link enabling comparing the
satellite and Earth-based clocks. If such a link can be achieved, one can also directly
test general relativity and provide a direct bound on the anomalous gravitational
redshift exceeding present bounds by orders of magnitude [38-40)].

7 Implementation

The Parker Solar Probe (PSP) has achieved near-solar orbital fly-by distances on the
level we consider in this work, 7 ~ 0.1 AU. The present mission can be integrated
into a future solar probe or be a part of a mission sequence to deploy high-precision
clocks in space. The clocks on the mission package will depend on the progress in
the development of new clocks with high sensitivity to the variation of fundamen-
tal constants (such as a nuclear clock) and the development of space-ready clocks.
Possible clock combinations for this mission were explored in [1].
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