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Abstract 
 

Emerging human-operated telemedicine as well as personable (semi)autonomous social robotic 

and virtual digibot therapists provide powerful clinical and field/flight-situation tools for surveil-

ling, diagnosing, and treating both physical and mental health crises of inaccessible, remote pat-

ients on Earth and elsewhere. Smart robotic and virtual therapists, which exploit continuing ad-

vances in artificial intelligence, neuromorphic architectures, animate embodied platforms, merg-

ed reality, and other technologies, may especially become ideal instruments to help optimize 

cognitive-emotional restructuring of astronauts suffering from space-related neuropsychiatric di-

sease and injury, including mood, affect, and anxiety symptoms of any potential severity and 

pathophysiology. Appreciation of precise, custom neuropsychiatric healthcare through use of 

new or repurposed assistive meta-learning inferential medical technologies will reveal deeper in-

sights about illness states expressed by astronauts and will help guide, over the decadal period, 

necessary biomedical research, technology development, and ethics for improved astronaut 

health, wellbeing, and performance in extreme space and extraterrestrial environments required 

for achieving near-term manned solar system exploration and habitation objectives. 

 

1. Introduction 
 

Spaceflight-engaged astronauts must often perform with sustained high physical, mental, emo-

tional, and social proficiency to satisfactorily begin and complete even routine daily mission du-

ties and habitation needs in nonterrestrial environments. Stresses caused by constant extreme-

environment exposure, such as high-dose cosmic radiation, microgavity, and social isolation or 

crowding in confined operational locations, intensify risks to the health, safety, and wellbeing of 

astronauts and further jeopardize already challenging mission goals and outcomes. Accordingly, 

the 2020 National Aeronautics and Space Administration (NASA) Technology Taxonomy road-

map and 2021 NASA Human Research Program Integrated Research Plan continue to under-

score the need for research, development, and application of technologies and methods that im-

prove human health, performance, life support, and habitation in space and extraterrestrial envi-

ronments to support and expand NASA’s goals for manned near-to-deep solar system explor-

ation. Specific areas of interest include, among other categories, medical diagnosis and progno-

sis, prevention and countermeasures, behavioral health and performance, contactless and wear-

able human health and performance monitoring, long-duration health, and system transformative 

health and performance concepts. These areas of emphasis are surveyed here in the context of 

neuropsychiatric insult, such as mood, affect, anxiety, personality, and psychosis disorders [1-

10], due to alterations in astronaut neurobiology and psychology associated with spaceflight, 

space gateway, and nonterran satellite/planetary surface conditions, including those expected of 

the lunar Artemis Program within the next five to ten years. In particular, state-of-art, emerging, 

and next-generation artificially intelligent social robotic and virtual digibot space medicine clini-

cians are considered as instruments to mitigate negative space-induced effects on astronaut ment-

al health, wellbeing, and performance. Such efforts moreover benefit the advancement of con-

temporary practices and policies for Earth-based in-clinic and telemedicine approaches for more 

effective surveillance, prophylaxis/intervention, treatment, and compliance strategies leading to 

greater positive patient outcomes over the target decade. 
 

Within a modern framework of artificial intelligence (AI)/machine learning (ML) state-of-art, 

ongoing attempts at building, launching, and employing Earth- and space-based onsite or remote 

https://www.nasa.gov/offices/oct/taxonomy/index.html
https://www.nasa.gov/offices/oct/taxonomy/index.html
hrrps://humanresearchroadmap.nasa.gov/
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assistive surrogate medical technologies, such as surgical robots, psychotherapeutic digibots, and 

smart wearables, highlight the difficulties in realizing truly human-like operational features for 

seamless operated (open loop), semi-autonomous (open-closed loop), or autonomous (closed 

loop) hardware-software systems [11-18]. These sorts of features, including simulated personal-

ity, causal reasoning, emotion, empathy, and other traits [11,12,14-16,19-39], show tremendous 

science-backed promise for augmenting real-time health-promoting interactions between precise 

supercomputing artificial theragnostic agents and human patients. Personable clinical surrogate 

technologies nonetheless remain comparably primitive in their emulation of humans. Expert 

appraisals further raise concerns over when many marketed consumer technologies will begin 

providing affordable, safe, and efficacious custom theragnostic outcomes with secure data handl-

ing, as imposed by clinical regulatory guidelines for civilian patient-information privacy (e.g., 

the United States (US) Health Insurance Portability and Accountability Act and Health Informa-

tion Technology for Economic and Clinical Health Act and the European General Data Protect-

ion Regulation). Consumers, patient stakeholders and advocates, government regulators, and 

health-industry professionals often recognize smart products from IBM Watson Health, Google 

Health, Amazon Care, and Apple as benchmark-setting voice and/or text interactive supercomp-

uting agents for real-time, inferential, and personable mobile, home, or clinical environment di-

gital healthcare solutions. Such computational platforms and applications render custom diagnos-

es, prognoses, and prescribed treatment courses through high performance AI/ML-powered fed-

erated learning, causal inference, and transfer learning, which depend on trained deep feature de-

tection and extraction, dimensionality reduction and blending, statistical predictive/attributional 

modeling, and additional processing of patient data and related information siloed in cloud and/ 

or in onsite cyberinfrastructure [cf. 11-14,17,18,40,41]. But, performance ratings falling well be-

low healthcare-industry standards for product reliability and, therefore, medical utility and eco-

nomic viability have generated considerable technology-ecosystem volatility over recent years in 

the private sector, leaving costly long-term proprietary endeavors, such as IBM Watson, as em-

barrassing exemplars of state-of-art gaps in medical information mining, interpretation, and inte-

grity [42-48] – lessons that drive future best Earth- and space-medicine practices and policies. 

 

2. Learning from Trends in Robotic and Virtual Clinicians for Earth and Space Medicine 

and Mental Health 
 

The above noted early and continuing industry work is currently being matched in many signifi-

cant ways by the AI/ML-powered Causal Relationship Inference Search Platform (CRISP) creat-

ed by the NASA-funded, SETI Institute-managed Frontier Development Lab and its Astronaut 

Health Challenge teams, faculty, partners, and advisors/reviewers in an effort to prototype and 

deploy enhanced healthcare technologies and capabilities for crewed space missions and Earth’s 

mass civilian population. Though only in its second experimental trial iteration, CRISP aims to 

give accurate, private out-of-distribution inferential physical disease-classification results from 

high throughput or brute batch-computing workloads involving big federated datasets, such as 

chosen open-source Facebook Research DomainBed, Medical Information Mart for Intensive 

Care-III, eICU Collaborative Research Database, Mouse Genome Informatics, and NASA Gene-

Lab synthetic datasets that target astronaut health risks and biomarkers for space-induced cancer 

and bone disease. The platform, employing testbed mouse and human synthetic and biological 

datasets, still needs to validate, scale, and otherwise refine capabilities for, but not limited to: (1) 

US Food and Drug Administration (FDA) medical device classification and regulation compli-

ance for oncomedical, osteomedical, and other purposes, (2) multiclassification causal discovery 

https://www.ibm.com/watson-health
https://health.google/
https://health.google/
https://amazon.care/
https://www.apple.com/healthcare/
https://frontierdevelopmentlab.org/
https://github.com/facebookresearch
https://mimic.mit.edu/
https://mimic.mit.edu/
https://eicu-crd.mit.edu/
http://www.informatics.jax.org/
https://genelab.nasa.gov/
https://genelab.nasa.gov/
https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device
https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/overview-device-regulation
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that accommodates physical and/or psychiatric condition morbidity and comorbidity, and (3) in-

tegrated, interoperable remote user/app/medical-device/database interfaces combined with more 

advanced data analytics/conditioning and workflow management to support real-time private (a) 

human or surrogate clinician-patient engagement using natural and technical language process-

ing, (b) digital biomedical information acquisition, processing, and interpretation (e.g., for multi-

omnics and -connectome data, medical imaging stacks, (semi)structured neuropsychiatric exami-

nation inventories, industry-approved physical and mental health clinical diagnostics standards, 

etc.), (c) electronic health-record entry, manipulation, transfer, and storage, (d) patient appoint-

ment scheduling and follow-up contacts, and for commercial healthcare needs, (e) patient and 

third-party insurer and medicare/medicaid billing.  
 

Such limitations in medical theragnostics, data processing, and patient-services delivery may be 

partially rectified by advancing virtual and embodied technologies already available in the 

healthcare free-/shareware and profitware marketspaces. For example, besides mainstream Goo-

gle Health Assistant, Amazon Care Alexa, and Apple Siri, CRISP may be architectured to adapt 

human-like interactive features from inter-/intranet-interfaced personable virtual digibots devel-

oped and released for mobile neuropsychiatric evaluation and treatment in civilian patient popu-

lations. These technologies, including Tess, Sara, Wysa, Woebot, and other affordable, accessi-

ble virtual devices [49-57], assume friendly professional chatbot or Avatar personas, attempting 

to help patients recognize and understand their cognitive-emotional states and to learn better de-

pression-, anxiety-, and psychoses-coping skills. Studies demonstrate that virtual digibots ach-

ieve positive patient outcomes sometimes comparable to those of actual human clinicians, even 

for patients suffering from severe therapy-resistant schizophrenia. Artificial surrogate-patient en-

gagement often relies on natural language processing that detects written or verbal expressions 

indicative of psychological distress [e.g., 58]. Digital markers of mental health crises then cue 

fast selective instructional or advisory smart-algorithm responses to guide patients through chal-

lenging experiences and contexts. Surrogate robot clinicians also produce similar results to those 

obtained by human and virtual counterparts [59-67], particularly for the so-called social com-

panion bots, such as Paro, eBear, Kaspar, Nao, and RoboTherapy. Although animal-like versions 

of these robots, which sense and respond to abnormal patient speech and movement with dyna-

mic dialog, may not be suitable for crewed space missions, they illustrate sound remote autono-

mous assistive surrogate healthcare solutions for patients expressing dysfunctional mood and af-

fect symptoms caused by social isolation and stress similar to those associated with space-miss-

ion work and living conditions. Social robot-patient interactions may also identify and mitigate 

poor social etiquette and peer teamwork via education and therapeutic interventions that encour-

age improved patient social skills, including, for instance, articulate communication, appropriate 

social gaze, empathy, politeness, and patience. Thus, with addition of these sorts of intelligent 

surrogate clinician-user engagement and diagnostic interfaces as well as other mentioned fea-

tures, CRISP may become a bonafide safe, effective robotic or virtual clinician for Earth and 

space theragnostic medicine applications.  

 

3. Developing and Delivering Better Human-Like Robotic and Virtual Clinicians for Space 

Medicine and Mental Health 
 

Despite the promising results of current state-of-art robotic and virtual clinicians, the capacity of 

these agents to attain the standards of human inference, personality, learning, and additional trait-

s largely remains unmet. Lake et al. [16] construct an optimistic ambitious plan for innovating 
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truer representative neural-network-inspired machine emulations of human consciousness and 

cognition, elusive pinnacle goals of many cognitive, semiotic, and cybernetic scientists [11,12, 

24,31,33,36,48,68]. Their machine-learning-based agenda, possibly requiring future generations 

of pioneering hybrid neuromorphic computing architectures and other sorts of technologies to be 

fully attained [30,32,35,36,69,70], relies on implementing sets of data-/theory-established “core 

ingredients” typical of natural human intelligence and development [21,36,38]. Such core ingre-

dients, including 1) intuitive (inferential) causal physics and psychology, 2) compositionality and 

meta-learning (or learning-to-learn), and 3) fast efficient real-time gradient-descent deep learning 

and thinking, will certainly endow contemporary state-of-art machines with greater human-like 

cognitive qualities. But, in Lake et al.’s efforts to create a standard of human-like machine learn-

ing and thinking, they erect barriers to realizing ideal human simulation by ignoring what is also 

very human – variations in cognitive-emotional neural network structure and function capable of 

giving rise to nonnormative (or unique) personalities and, therefore, dynamic expression of 

human intelligences and identities [11,12]. Moreover, this same counterintuitive problem in the 

authors’ otherwise rational approach dangerously leaves unaddressed the major ethical and se-

curity issues of “free-willed” personified artificial sentient agents often popularized by fantasists 

and futurists [11,12,22,25,71], creating dilemmas for implementing artificial surrogate clinicians. 

To completely simulate the range of human intelligence and maximize artificial surrogate cap-

abilities, particularly sociable and selfless tendencies critical for nascent beneficial social-like 

surrogate-human and surrogate-surrogate interactions, scientists and technologists must account 

for and better understand personality trait formation and development in autonomous artificial 

technologies [11,12]. These kinds of undertakings over the next decade will help yield desirable 

insights into the evolution of technology-augmented human existence and, perhaps more impor-

tantly, will inform best practices when establishing advisable failsafe contingencies against un-

wanted serendipitous or designed human-like robot or virtual clinician behavior, such as inade-

quate or wrong patient-health assessment and treatment; slow, inequitable, and opaque patient-

service provision, deviant surrogate-patient bonding and compliance; and illegitimate patient, ill-

ness, cohort, and societal objectification. 
 

Besides their described usefulness for modeling intended artificial cognitive faculties, Lake et 

al.’s core ingredients provide systematic concepts and guidelines necessary to begin better ap-

proximating human-like artificial agent traits and to probe genuine ethological, ecological, and 

evolutionary consequences of those traits for humans, robots, and digibots in clinical settings in 

Earth, space, and extraterrestrial environments. Similar reported strategies for architectures, algo-

rithms, and performance demonstrate, however, only marginal success as protocols to reach 

nearer cognitive-emotional humanness in trending social robot and digibot designs [cf. 11,12], 

emphasizing serious need for improved adaptive quasi-model-free/-based neural nets, trainable 

distributed cognition-emotion mapping, and artificial personality trait parameterization. The best 

findings from such work, although far from final reduction-to-practice, arguably involve appear-

ance of crude or primitive artificial personalities and identities from socially learned intra-/inter-

personal relationships possessing cognitive-emotional valences. Valence direction and magni-

tude often depend on the learner robot or digibot disposition toward response priming/contagion, 

social facilitation, incentive motivation, and local/stimulus enhancement of observable demon-

strator behavior (e.g., human, cohort-machine, and learner-machine behavior) [11,12]. The re-

sulting self-/world-discovery of the learner artificial agent, analogous to human phenomena ac-

quired during early formative (neo)Piagetian cognitive-emotional periods, reciprocally shapes 

the potential humanness of reflexive/reflective artificial agent actions through labile interval-de-
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limited self-organizing traits consistent with natural human personalities, including, but not re-

stricted to, conscientiousness, openness, emotional stability, agreeableness, and  extravertsion/in-

troversion. Even simplistic artificial cognitive-emotional profiles and personalities thus effect 

varying control over acquisition and lean of agent domain-general/-specific knowledge, percep-

tion and expression of flat or excessive affect, and rationality and use of causal inference and 

transfer learning as applied in medical theragnostic decisions. And, by favoring certain artificial 

personality traits, such as openness, a learner agent’s active and passive pedagogical experiences 

may be radically directed by the quality of teacher-student rapport [e.g., 11,12,36] and surrogate 

clinician-patient rapport, enabling opportunities for superior nurturing and growth of distinctive 

well-adjusted thoughtful agent behavior while, in part, restricting harmful agent behavior caused 

by impoverished learning environments. Under such constraints, an artificial surrogate clinician 

may learn to learn to be a safer, more effective therapist. These considerations, along with the 

merits of Lake et al’s core ingredients, will bear increasing technical and sociocultural relevance 

as the Human Brain Project, the Blue Brain Project, and related connectome endeavors continue 

to drive imminent neuromorphic hardware research and development toward precise mimicry of 

configurable/computational soft-matter variations in human nervous systems and, therefore, 

more human-like artificial agents [cf. 72], including surrogate robotic and virtual Earth- and 

space-medicine clinicians over the decadal period. 

 

4, Final Comments involving Medical Ethics 
 

Focused, dedicated industry, academia, and government research and development will greatly 

advance these emerging technologies and their clinical translation over the next ten years. Suit-

able government and industry regulation of technology safety, efficacy, privacy, and security 

must keep pace with that future. Rigorous transparent discussion about proper technology-assist-

ed medical information management and use are essential to the smooth, high-quality delivery of 

intelligent artificial surrogate clinicians for both Earth- and space-medicine purposes. Such large-

scale coordinated community efforts facilitate cultural understanding about the medical and eco-

nomic value and the societal role of intelligent technologies, encouraging and sustaining con-

sumer confidence and positive relations between patients and healthcare-resources and -services 

providers. To that end, clearer guidelines [11-18,40,41,71] need to be constructed to determine 

whether and what artificially intelligent surrogate-clinician technologies should be subject to 

standard healthcare technology regulatory evaluation and approval, including provisions for (1) 

technology use outside the supervision of healthcare professionals, (2) professional organization 

recommendations and establishment of best policies and practices for training healthcare provid-

ers for technology use in different healthcare models, (3) satisfying duties of care, reporting of 

harm, and issuing reliable pathways for risk assessment and services referral, (4) technology 

oversight and services transparency which respect patient autonomy, vulnerability, manipulation, 

coercion, and privacy, and (6) scrutiny and mitigation of biased technology and services delivery 

and factors that lead to such outcomes (e.g., data validation, open source platforms for obtaining 

and distributing digital biomarker data, behavioral and digital phenotyping, data-driven learning en-

gines, use of real-world evidence, cost and infrastructure for data storage and analysis, data integration 

with clinical records, data ownership and release, etc.). 
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