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The continuing exponential increase in scientific data generation has accentuated the lack of 
investment in tools for researchers to discover and access all data relevant to a given hypothesis 
quickly, accurately, and completely. They are typically faced with a wide range of challenges 
related to gathering and comparing multiple sets and types of data from many different sources 
and databases. Yet research into the biological processes underlying health risks of space 
environments will necessarily involve comparing findings from experiments on model organisms 
with one another, and ultimately corroborating them with those of human studies. For example, an 
investigator wishing to probe the effects of CO2 on the human eye may wish to construct the 
following query:  

 
Query 1.  “Find transcription data on all mammals studied in space with gravity between 0 and 

0.2 and exposed to pCO2 levels higher than 0.35 mmHg, that also have proteome 
profiles and measurements of intra-ocular pressure”.   

 
NASA-funded scientific data discovery systems often will fail to discover all the data relevant 

to a complex query like Query 1, and/or include too much irrelevant data. This is primarily because 
these systems most commonly employ natural language term indexing. Natural language term 
indexing technologies, the most prevalent kind of indexing used by scientific data systems today, 
index terms devoid of any context or meaning. The result is too often a set of search results with 
precision and recall that are low, particularly when executing a complex query like Query 1 due in 
part to the lack of uniformly applied structuring, understanding and indexing of both the data and 
the query itself.  Thus, for an ambiguous term such as  “space” in Query 1, a system will be unaware 
of whether it refers to an anatomic region of an organism (such as “epidural space” [1]), a quality 
of swarming by organisms (“space swarm”), or to the vacuum of “outer space [2].”  Ontological 
logic can be used to discriminate among these concepts when data are indexed and queried so that 
queries specifying the concept of “outer space” do not yield results that include data associated 
only with epidural space. In the case of Query 1, the word ‘space’, is indexed against one or more 
ontologies to specify the correct interpretation of what is written: the concept “outer space”.   

Conversely, while many natural language query systems suffer from returning wrong results, 
they are also prone to missing many results, particularly where the concept being searched is 
represented in a different way to the word searched.  For example, many data discovery systems 
do not leverage the power of synonymy, hypernymy, and hyponymy information available through 
resources developed by the biomedical community (such as [3] and [4]). Query 1 contains a 
tremendous amount of domain knowledge, both explicit and implicit, that is essential to the proper 
execution of this kind of query: 1) transcription data include those data from micro-array, “single-
cell RNA-seq”, spatial transcriptomics  and other assays; 2) mammals includes rodents, mini pigs, 
dogs, humans, and monkeys (and rodents includes mice, rats and others); 3) a “space environment” 
must include a location (approximately) outside the earth’s atmosphere, etc.  Capturing and 
representing this knowledge when indexing data for retrieval or when generating queries of these 
data have long presented significant challenges for scientific data systems designers [5, 6].   

We highly recommend space agencies fund systems that can build and maintain knowledge 
graphs linking the wide range of data collected through space biology research. Such a knowledge 
graph would aim to resolve common challenges of data sourcing by vastly improving the way it is 
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both queried and indexed. We recommend building the knowledge graph using current state-of-
the-art technologies, and by doing so, space agencies will set a new standard for data collection 
and retrieval in the biological sciences. 

Most scientific data repositories, particularly the largest ones in the biological and physical 
sciences, rely on relational database technologies.  Implementations of the relational database 
model have evolved into various highly efficient and powerful data management systems capable 
of rapidly searching and accessing millions of records using modest equipment.  However, as 
knowledge expands in a given domain (application area), maintaining systems that rely on 
relational database systems (RDBS) is all too often expensive and painstaking, largely because 
lexical domain knowledge is almost always inextricably embedded in the table schemas at the core 
of these systems.   For example, while the introduction of a new attribute for an object type 
represented in an RDBS is often fairly straightforward (as simple as adding a new column to an 
existing table describing the object type’s attributes), adding a new object type that has only some 
of the attributes of an existing object, plus additional new attributes can be quite challenging, and 
result in large numbers of sparsely populated tables.  What this means is that, particularly for a 
large, established RDBS, these systems cannot evolve to accommodate changes in data structures 
and become static and difficult to maintain.  

Furthermore, the ability of Structured Query Language (SQL), the most-commonly 
implemented standard for searching RDBS, to leverage domain knowledge easily and 
automatically is limited. Designers of scientific data repository systems must develop and 
incorporate bespoke methods for expanding or otherwise enhancing user-generated queries based 
on domain semantics prior to execution, which are often cost-prohibitive.  For example, to expand 
the query term “mammals”, developers might choose to develop software that leverages the NIH 
taxonomy of living organisms [7], that can transform the term into a SQL phrase consisting of a 
union of terms describing all sub-types of mammals.  This query expansion capability, while 
critically important, not only requires significant investments in software development, but 
supervision of the development by those with specialized domain knowledge. In addition, term 
expansion strategies, when naively used, can lead to large reductions in search precision.  

These and other weaknesses of RDBS have led to the development of several alternative 
formulations for storing and querying data, including those that have come to be labeled “NoSQL” 
systems.   By de-coupling data schemas from the structures used to store the data (to form schema-
less systems), NoSql systems feature a robustness to changes in domain knowledge, and, more 
importantly, have the ability to leverage this knowledge in query generation and execution.  Many 
NoSql systems support the SPARQL query language, a standard for representing queries as a series 
of triples to filter knowledge or other kinds of graph representations of data.  SPARQL can also 
be used to query knowledge in the form of ontologies, and a large and growing body of biomedical 
knowledge is currently represented in ontologies through world-wide open source ontology-
building efforts such as the OBO Foundry.  Using the features of NoSql, SPARQL, and the 
burgeoning knowledge available in the form of ontologies together, systems can achieve a much 
higher level of incorporation of domain knowledge into data retrieval. 

However, NoSQL systems that are “aggregate orientated” suffer from problems due to the way 
data is stored. Aggregate orientated NoSQL systems only group data based on a single dedicated 
view, meaning that to realize new projections and perspectives of the data that it must then be 
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crunched and duplicated. 
These issues make 
aggregate orientated 
NoSQL systems inefficient 
when needing to compute 
graph like queries, such as 
those shown in figure 1. On 
the other hand, NoSQL 
native graph databases, such 
as Neo4J and OrientDB, 
offer a much better 
alternative for both graph 
processing and graph 
storage. Systems like these 
are designed specifically to 
query only the proportion of 
the data (graph) traversed in 
the query. Graph databases, 
like aggregate-orientated 
NoSQL databases, are 
schema-free, naturally 
additive, and do not suffer 
from query issues such as 

“join-pain” commonly encountered in RDBS alternatives.  
There are several ways that scientific data discovery systems can and should leverage more 

suitable query systems to empower users.  One such way involves systems dynamically querying 
a repository of domain semantics like OBO Foundry for terms related in pre-defined way to 
submitted query terms, and then searching the index of the repository for these additional terms, 
to enhance recall (“query expansion” [6, 8]).  For example, if a user submits a search to OBO 
Foundry using the terms “eukaryote” and “space radiation”, a system could pre-process the query 
by determining that “solar cosmic radiation” is a kind of “space radiation”, and that “Mus 
musculus” is a type of “eukaryote”.  The system could then augment the user’s original query with 
the terms “solar cosmic radiation” and “Mus musculus”, likely yielding more, relevant query 
results.  Alternatively, the system could have indexed data sets with these additional terms prior to 
any query (“index expansion”), yielding similar results.   

These simple query and index expansion examples indicate the power of leveraging domain 
semantics to improve data discovery using one kind of domain semantics (subclass relationships), 
and there are more complex ways to transform user queries using other kinds of domain semantics.  
For example, by leveraging consider the query that includes the terms “radiation” and “gene 
expression”.  Using existing knowledge of domain semantics like that found in the OBO Foundry 
in the form, this query could automatically be expanded to include the term “RNA-seq”, even 
though that term is not a synonym, hyponym or hypernym of either of the two query terms.  In the 
OBO Foundry knowledge base, the class “gene expression” is identified as an output of the “assay” 

 
Figure 1. Query 1 represented as a graph of linked data. 
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subclass “RNA-seq” (specifically, the class RNA-seq includes the axiom “RNA-seq” 
“has_specified_output” some [is about some gene expression]”, meaning the assay outputs 
something that is, at least in part, about the class “gene expression”).  The result of using this kind 
of readily available, community vetted, continuously maintained domain knowledge would be 
increased search recall. More specifically, it is likely some data sets exist which are identified in 
repositories as employing RNA-seq, but that make no mention of the concept “gene expression”, 
the subject of the output of this assay.       

The application of the above-described approaches that leverage domain semantics to enhance 
retrieval precision and recall is certainly a step forward, compared to commonly used, keyword 
retrieval methods.  However, these methods still yield suboptimal results when given the kind of 
query complexity inherent in Query 1.  Consider a system that transformed Query 1 into the 
disjunction of a set of semantically expanded terms; the transformed query is likely to yield too 
many irrelevant studies in search results, as it would include any and all studies involving 
transcription profiling, proteome profile or measuring intra-ocular pressure.  And using instead a 
conjunction of the expanded set of terms could exclude relevant data, when no single investigation 
used all these kinds of assays.  The only way to properly execute Query 1 is if all the knowledge 
implicit in the query is represented in both the query and/or index generated.   

“Find transcription data on all mammals studied in space with g between 0 and 0.2 and 
exposed to pCO2 levels higher than 0.35 mmHg, that also have proteome profiles and 
measurements of intra-ocular pressure” 

 
PREFIX OBI:   <http://somewhere/peopleInfo#> 
PREFIX rdf:   <ww.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX BFO:   < http://www.ifomis.org/bfo 
PREFIX NCBITaxon:   <http://purl.obolibrary.org/obo/ncbitaxon> 
 
SELECT ?data1  
WHERE 
{ 
    ?assay1 OBI:has_specified_output  ?data1 . 
    ?assay1 rdf:type  OBI:’transcription profiling assay’ . 
    ?assay1 OBI:has_specified_input ?sample1 . 
    ?sample1 BFO:part_of ?organism1 . 
    ?organism1 BFO:part_of ?organism1 . 
    ?organism1 RBO:exposed_to ‘g between 0 and 0.2’ . 
    ?organism1 RBO:exposed_to ‘pCO2 > 0.35 mmHg’ . 
    ?sample1 NCBITaxon:order “Mammalia” . 
    ?assay2 OBI:has_specified_input ?sample2 . 
    ?sample2 BFO:part_of ?organism1 . 
    ?assay2 rdf:type  OBI:’proteome profiling assay?’ . 
    ?assay3 OBI:has_specified_input ?sample1 . 
    ?sample3 BFO:part_of ?organism1 . 
    ?assay3 OBI:has_specified_output OBI:’intra-ocular pressure datum’ 

. 
} 

Figure 2. Query 1 represented as a SPARQL query. 

http://www.w3.org/1999/02/22-rdf-syntax-ns
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Query 1 contains important specifications for how elements of the query relate to each other 
(Figure 1).  It seeks data from the transcription profiling assay of samples from an organism from 
which other samples were taken that were subjected to different kinds of assays.  It also stipulates 
that the organism from which the samples were collected was exposed to certain environmental 
conditions.  This kind of knowledge that the query includes as part of its constraints on the data it 
seeks forms the basis of “linked data” [9], a vision for using relations to represent and query 
information as an interconnected graph of objects.  Complex queries that reference linked data and 
objects can only be successfully executed when there is communication of this type of knowledge 
from users to data retrieval systems.   

Linked data can be represented by using any of a variety of technologies, but over the past 
decade a few have been developed for the specific purpose of efficiently and easily representing 
linked data.  Chief among these technologies are graph databases [10], and the more specialized 
triplestores [11].  The knowledge graph implicit in the natural language of Query1 could be 
represented by the example SPARQL query shown in Figure 2.  Note that in this example, there 
are 14 separate constraints on the data sought, and these constraints involve 7 different object 
types, three instances of samples, three assays, and 1 whole organism, with six different properties 
linking them all together.  These properties each provide powerful and meaningful context for the 
objects in the query; for example, by specifying that the organism for which transcriptome data 
are sought also had samples in which intra-ocular pressure was measured (as opposed to searching 
for the term “intra-ocular pressure” in any metadata context).  While the complexity of Query1 as 
represented either as a graph or in the SPARQL language may seem dauntingly complex, there has 
been progress in the last decade in the development of interfaces that support users generating 
these kinds of complex, graph-based queries that include domain semantics [12].  In addition, 
commercial-grade technologies like Neo4j include visualization modules that support users 
inspecting SPARQL results and allowing them to validate their results match their query’s intent.   

Each of the properties in the example query in Figure 2 is specified as current, actual 
relationship type as specified by ontologies of the OBO Foundry.  While this global 
knowledgebase has yielded broad models in many areas of biomedicine, it currently lacks deep 
models for specific application areas like the space sciences.  It will be imperative for the space 
science communities to further these models to leverage this knowledge in all kinds of scientific 
data systems.  Augmenting these models using the process and principles recommended by the 
OBO Foundry, in which ontologies are transparently and cooperatively developed and 
interconnected by the scientific community themselves, should also be among top priorities for the 
space agencies, as well as academia and industry involved in space science research. 

The challenges to building a deep and broad understanding of the biological effects of off-world 
environments on organisms and their ecosystems are great.  But humankind is still relatively early 
in this process.  However, now is the time for building processes and systems that support the 
creation and querying of knowledgebases that can support an ever-evolving understanding of space 
biology.  Further delay would doom future investigators to using outdated, brittle data retrieval 
paradigms and limit their ability to corroborate and augment this knowledge rapidly and 
accurately.   

 



7 
 

 

REFERENCES 

 
 

[1] UBERON. Epidural Space. Available from: 
http://purl.obolibrary.org/obo/UBERON_0003691. 
[2] ENVO. Outer Space. Available from: http://purl.obolibrary.org/obo/ENVO_01000637. 
[3] Tuttle, M.S., et al. The semantic foundations of the UMLS metathesaurus. in MEDINFO 92. 
Proceedings of the Seventh World Congress on Medical Informatics. 1992. Amsterdam, 
Netherlands: North-Holland. 
[4] Smith, B., et al., The OBO Foundry: coordinated evolution of ontologies to support biomedical 
data integration. Nat Biotechnol, 2007. 25(11): p. 1251-5. 
[5] Berrios, D.C. and R.M. Keller. Developing A Web-based User Interface for Semantic 
Information Retrieval. in Workshop on Semantic Web Technologies for Searching and Retrieving 
Scientific Data: ISWC 2003. 2003. Sanibel Island, Florida, USA. 
[6] Voorhees, E.M. Query expansion using lexical-semantic relations. in SIGIR '94. Proceedings 
of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development 
in Information Retrieval. 1994. Berlin, Germany: Springer-Verlag. 
[7] National Center for Biotechnology Information, U.S.N.L.o.M. Taxonomy Database. Available 
from: https://www.ncbi.nlm.nih.gov/taxonomy. 
[8] Aronson, A.R. and T.C. Rindflesch, Query expansion using the UMLS Metathesaurus. Proc 
AMIA Annu Fall Symp, 1997: p. 485-9. 
[9] Wikipedia. Linked Data. Available from: https://en.wikipedia.org/wiki/Linked_data. 
[10] Wikipedia. List of Graph Databases. Available from: 
https://en.wikipedia.org/wiki/Graph_database#List_of_graph_databases. 
[11] Wikipedia. Triplestore. Available from: https://en.wikipedia.org/wiki/Triplestore. 
[12] Dastgheib, S., et al., SPARQLing: A Graphical Interface for SPARQL. 2015. 

 

http://purl.obolibrary.org/obo/UBERON_0003691
http://purl.obolibrary.org/obo/ENVO_01000637
https://www.ncbi.nlm.nih.gov/taxonomy
https://en.wikipedia.org/wiki/Linked_data
https://en.wikipedia.org/wiki/Graph_database#List_of_graph_databases
https://en.wikipedia.org/wiki/Triplestore

	REFERENCES

