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Introduction 

Within the context of space exploration, lymphatic function and the vascular endothelial 

glycocalyx (GCX) remain under-researched areas. Within the past 20 years, lymphatic research 

and the understanding of lymphatic function within human health has clinically accelerated and 

gained increased recognition1. A missing element to incorporate into the paradoxes of many 

biological and physiologic pathologies associated with extreme environments may reside within 

the response and adaptation of the lymphatic system and the GCX2-5. To gain this important 

perspective, research will first be required in ground-based analogues for spaceflight6, then 

progressing to true weightlessness in low earth orbit (LEO), as we begin to understand the 

impact on human physiology within the context of lymphatic and GCX function during exposure 

to extreme environments7-14. Spaceflight biology is advancing the understanding of genetics 

and epigenetics, metabolism, mitochondria, microbiome, digestive health, micro- to macro-

vascular function, fluid shifts, immune function, neural and glial plasticity, ect., within the 

confines of an isolating spaceship with elevated radiation exposure15. Lymphatic 

function/contractility is now noted to be regionally, organ and tissue function specific16. The 

GCX lines the luminal surface of the 60-70,000 miles of the arterial, venous, and lymphatic 

vasculature to the 5-micron level. The new pathways of research into both areas are a robust 

opportunity to correlate nominal function, pathophysiology, and adaptability.  On Earth, body 

fluid compartments are maintained and balanced by the nano-scaled architectural integration 

of the endothelial GCX, the vasculature, the integument, and the lymphatic system. The GCX is 

a carbohydrate-rich matrix composed of proteoglycans, glycoproteins, glycosaminoglycans, 

coagulation pathway and anti-inflammatory components2,3,5,17,18.  The GCX is a dynamic, 

functional, multi-level, integrated matrix that is adhered to cell membranes and the structural 

cellular cytoskeleton, regulating fluid, solute, and macromolecule transfer from the vessels into 

the sub-glycocalyx and interstitial spaces19-22. The GCX, stimulated by luminal oscillatory shear, 

results in mechanacotransduction and eNO (endothelial nitric oxide) production through 

coupling of eNOS (endothelial nitric oxide synthetase) and radical oxygen species (ROS) 

quenching23-27.  

Lymphatic system function is gravity dependent, GCX shedding in weightlessness is a current 

unknown 

The lymphatic system’s capability to transport fluid from the lower extremities and torso, 

against gravity and soft tissue gradients, occurs via a combination of lymphangion contractility, 

leg muscle contraction, and respiratory/chest wall function in the setting of “primed” 

local/regional subatmospheric tissues. This creates a “suction effect” within the 

subatmospheric tissue distribution zones for lymphatic fluid movement within the lymphatic 

vasculature, lined with lymphatic endothelial cells and the GCX (the Guyton principle)28,29. The 

head, neck, and upper torso, however, are gravity gradient dependent for venous and 

lymphatic drainage, and must be balanced with arterial in-flow to this region30. In the 
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weightlessness of space, astronauts experience a dramatic fluid redistribution of ~ 2 liters from 

the legs to the head, neck and upper torso within the first 24-48 hours of flight31; this may be 

due in part to the persistence of pedal to cephalad lymphatic fluid flow due to “Guyton forces” 

and loss of gravity induced head and neck lymphatic drainage, resulting in an imbalance of soft 

tissue fluid gradients. A contributing physiologic component is the loss of “tissue weight” which 

reduces tissue hydrostatic pressure further, resulting in a higher transmural pressure which 

increases fluid flow into tissues14. Compromise of teleologically less robust head and neck 

lymphatic contractility (standard environment is “1G” with gravity assist drainage) may 

accentuate cephalad fluid shifts due to compromised drainage. Cervical lymphatic contractile 

inhibition was identified in a rat head down tail suspension model 32 and within the 

gastrointestinal mesentery of space flown mice33. A NASA Task book listing provides partial 

details of male C57BL/6 mice after 30-days aboard ISS . The cervical lymphatic vessels (CLVs) 

showed increased lymphatic tone and enhanced stretch-dependent changes in contraction 

frequency, while the flow/shear-induced inhibition on lymphatic phasic contraction was 

significantly impaired. The authors concluded that there was more constricted lymphatic vessel 

status overall and a loss in flow-sensitivity in spaceflight, suggesting a functional adaptation of 

CLVs in response to the loss of gravitational force and cephalic fluid accumulation (full data 

embargoed)34. Mouse CLVs may not be an accurate representative of human CLVs given 

ontological differences.  

GCX shedding is known to occur with elevated atrial naturetic peptide (ANP)35 levels. ANP levels 

and bioactivity are elevated for the first 24 hours after launch in the setting of a decreased CVP, 

then ANP levels decline36-38. GCX shedding, because of elevated ANP, would result in diffuse 

vascular hyperpermeability and fluid shifts, though not necessarily result in a diuresis given the 

subsequent associated decrease in plasma volume. GCX shedding remains undetermined and 

has not been researched in weightlessness. A 5-day HDT (head down tilt) study measuring 

limited GCX components of heparan sulfate (HS) and hyaluronate (HA) (non-carbon dioxide 

elevated testing environment), noted no elevated HS or HA that would be indictive of shed 

GCX. L-Selectin levels, however, were noted to be elevated39. Over the first 2 weeks, a 10-17% 

plasma volume reduction occurs without associated notable change in crew mass12,40, which 

potentially could be accounted for by shedding of the GCX resulting in diffuse microvascular 

hyperpermeability and may correlate with the noted decreased systemic vascular resistance 

(SVR) of 14-39% and increased cardiac output and stroke volume (Doppler technique on ISS, 23-

25% and 19-21%, respectively). The phenomenon of “neocytolysis” resulting in young red blood 

cell (RBC) culling and relative decline in total RBC mass41-44, may also impact GCX maintance and 

restoration given RBC contribution to GCX integrity through delivery of sphingosine 1 

phosphate (S1P) in conjunction with albumin, both significant components of a functional 

GCX45,46. Increased oxidative stress and inflammation with the potential to impact arterial 

function and shear may also impact GCX thickness and function, potentially contributing to 

eNOS uncoupling and decreased eNO production26,47,48, especially in at risk crew based on 

single nucleotide polymorphisms (see SANS discussion). 
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Glycocalyx potential implications in weightlessness 

The classic Starling forces as described in 189648 have been dogmatic for over 100 years. The 

endothelial GCX has both an anatomically defined layer and a functionally integrated layer 

resulting in endothelial cell expression. The recognition resulted in a “modified Starling forces” 

equation with an emphasis on the critical nature of the lymphatic system to interstitial fluid 

management and immune function, imparting dynamic crucial characteristics to tissue, organ 

and bodily health49. The recognition of modified Starling forces now confirms that the vast 

majority of interstitial fluid resulting from arterial perfusion re-enters the central venous 

system via the vast lymphatic network, and not via venules 4,50-52. However, lymphatic 

education and recognition remains “paradoxically and unnecessarily ignored” at the medical 

school and residency levels1. Lymphatic research in space and astronaut health may 

“paradoxically” help to close this medical school curricula gap. Certified Lymphedema 

Therapists (CLT) and Physical Medicine and Rehabilitation (PMR) providers have been leaders in 

the arena of lymphatic evaluation and management. Given that chronic venous disease  (CVD) 

and all venous ulcerations have associated GCX thinning or shedding53, that associated 

lymphedema of venous etiology/phlebolymphedema is a common though vastly 

underrecognized and undertreated component54,55, has a significant economic impact56, and 

that there remain significant gaps in the understanding of  topical treatment of venous leg 

ulcers and associated lymphedema develpoment57, the potential for patient care improvement 

(medical “spinoff’s) is significant. The focus on astronaut health and countermeasure 

development will expand understanding in preparation for exploration class missions58. 

With respect to the lymphatic system, a key role of the GCX must be considered: The GCX has 

been shown to be responsible for the transmission of extracellular forces into the cell5,59-63.  For 

example, the endothelial GCX directly transmits the continuous force exerted by the blood 

stream, like the wind brushing through grass. Within the cell, the bending of the “glycocalyx 

grass” results in an integrated torque, causing a tailored response of cytoskeletal structures, 

cell adhesion foci, and junctional complexes62,64, which is immediately abolished when 

glycocalyx-mediated mechanotransduction is abolished. Relative to these facts, several 

questions must be answered: First, how do the long-term systemic effects of weightlessness 

impact microvascular shear that maintains a healthy functional GCX?24-26  Second, how is GCX 

mechanacotransduction impacted upon prolonged exposure to weightlessness and how are 

these changes reflected in cell morphology and intracellular function given cytoskeleton 

connectivity (“tensegrity”) ?5,17,19,21,23,24,25,62,65,66  Third, can the GCX be proactively targeted to 

reduce adverse systemic consequences of prolonged weightlessness if in fact the GCX is shed 

either in the initial 24- hours of weightlessness, during the initial 1-7 days of adaptability or 

after deorbit during the period of orthostatic hypotension?67  Each of these questions offer a 
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rich, potentially high yield, area of new endeavors and study with potential “spinoffs” to 

standard medical cares. 

 

 

Spaceflight Associated Neuroocular Syndrome: SANS 

Approximately 40% of astronauts have experienced one or more ocular findings, now defined 

within the overarching term SANS (Spaceflight Associated Neuro-ocular Syndrome). Several 

non-exclusive theories have been proposed with overlapping validated data that contributes to 

a “multi-hit theory”68-74 . One question specifically raised is “What role, if any, does the 

lymphatic/glial lymphatic (glymphatic) circulatory system play in SANS?.”  A 2020 study used a   

lymphatic imaging technique (near-infrared fluorescence lymphatic imaging, NIRFLI), to 

dynamically visualize the deep lymphatic drainage pathways shared by CSF outflow and 

disrupted during HDT. After validating CSF clearance into the lymph nodes of the neck in swine 

via intrathecal injections, a correlating pilot study was conducted in human volunteers to 

evaluate the effect of gravity on lymph flow through deep cervical lymphatics. IndoCyanine 

Green (ICG) was injected into the palatine tonsils and imaged draining into deep jugular 

lymphatic vessels and the cervical lymph nodes. NIRFLI was performed under HDT, sitting, and 

supine positions. NIRFLI demonstrated that lymphatic drainage through pathways shared by 

CSF outflow are dependent upon gravity assist and are impaired under short-term HDT75.  

Understanding “brain fluid mechanics” in weightlessness is an incomplete science as true ICP 

(intercranial pressure) has not been measured in long duration spaceflight76. The integrity of 

the blood brain barrier (BBB) and blood retinal barrier (BRB) GCX component and potential 

shedding have not been fully assessed and remains an opportunity for research in both ground-

based analogues and true weightlessness77-81, especially in light of the cerebral venous changes 

noted on MRI pre and post flight consistent with venous “congestion” and potentially venous 

hypertension82. The brain glymphatic system was first described in 201283, was recently 

recognized to compose a part of the optic nerve sheath and ocular drainage system84,85. The 

glymphatic system has a recognized primary function of metabolic waste clearance, functioning 

via “sweeping” beta amyloid and other metabolic waste products in nightly supine positioning, 

and is aligned with circadian function86. Given the lack of “supine” position sleeping on ISS and 

recognized circadian disruptions87-88, glymphatic efficiency may be impaired as demonstrated in 

5 cosmonauts during mean mission lengths of 169 days89. An elevation of amyloid proteins was 

noted upon return Earth and was felt to represent a washout phase after months of hindered 

protein waste clearance. An ocular glymphatic clearance system which removes -amyloid from 

the rodent eye has also been described 90. Given that the orbital optical nerve venous and 

lymphatic drainage systems may affected by venous and lymphatic stasis during cephalad fluid 

shifts, a hypothetical framework has been proposed by which optic disc edema may result, at 

least partly, from the forcing of peri-optic cerebrospinal fluid into the optic nerve and optic disc 
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along the perivascular spaces surrounding the central retinal vessels91-92. The authors propose 

that prolonged exposure to weightlessness may predispose to an overload in the periarterial 

inflow of CSF into the optic nerve sheath, resulting in optic nerve cross sectional reduction. In 

those astronauts without pathologically elevated postflight CSF pressures in the optic nerve 

sheath, the rapid fluid redistribution upon return earth may lead to reduced CSF volume and 

pressure within the optic nerve sheath. This may decrease CSF inflow along the optic nerve 

periarterial glymphatic spaces, resulting in periarterial space reduction or disappearance. This 

could contribute to the observed decrease in optic nerve cross-sectional area. Further 

measurements, including in flight, would contribute to further evaluation of this hypothesis93. 

One high value target is determining the impact of venoconstrictive thigh cuffs and lower body 

negative pressure (LBNP)94-97 upon the dermal lymphatic ventromedial bundles98 in ground-

based space analogues of both lower extremity models and head/neck transcapillary fluid 

shifts99. Understanding lymphangion contractility response and lymphatic ventromedial bundle 

flow patterns and lymphatic thoracic duct pre-/ during/post – cuff use, may explain the 

decreases noted in ocular pressure100, ICP97, jugular venous distention101-104 and potential 

benefits for SANS94-97.  

A recent validated non-invasive, low mass/weight option for chronic venous insufficiency and 

lymphedema evaluation is Point of care Thermography (POCT)105-107, which may further 

improve the evaluation and understanding of cephalad fluid shifts related to venous distension 

and suspected lymphatic dysfunction. Thermography has an established history in astronaut 

orbital use as a noncontact handheld extravehicular activity (EVA) inspection tool for Shuttle 

wing evaluations108. Subsequent POCT devices have continued to decrease in size and 

mass/weight while innovative engineering has achieved improved thermal image signal 

acquisition, tissue differentiation and increased pixel count for improved sensitivity and 

specificity. This may also be of benefit for core body temperature (CBT) evaluation of 

astronauts109. 

Post Flight Astronaut Orthostatic Intolerance 

 Post flight orthostatic intolerance has been extensively studied and countermeasures applied 
110-113 . Lymphatic dysfunction and potential GCX shedding both may contribute to this condition 

through impaired interstial fluid clearance and vascular hyperpermeability. Age, pre-flight 

physiologic status, individualized response to training, nutritional intake, cardiovascular 

adaptability, and genetics may all play a contributing role114. 

Conclusion 

Further detailed research regarding altered lymphatic and GCX function is indicated. 

Countermeasure incorporation into pre-launch, in-flight and post-flight segments may include 

lymphatic/GCX restorative checklists, consisting of manual lymphatic drainage (MLD), LBNP, 

Sulodexide115, and Micronized Purified Flavonoid Fraction (MPFF)116-118/diosmin119. It is our 

hope that this new field of aerospace medicine will be prioritized as an essential research 



Decadal Melin, et al 2021 7 
 

element for nominal human health, as lymphatic and GCX functional restoration and 

maintenance will support improved human health in space and on Earth. 

 

  

 

 Textbooks 

1. Handbook of venous and lymphatic disorders, Guidelines of the American Venous Forum, Fourth 

edition. Editor Gloviczki, P. Associate Editors Dalsing MC, Ekolf B, Lurie F, Wakefield TW. 

Assistant Editor Gloviczki ML. CRC Press, Taylor & Francis Group. 2017. 

2. Principles of Clinical Medicine for Space Flight. Editors Barratt MR, Baker ES, Pool, SL. Springer 

publisher, 2019. 

3. Fundamentals of Aerospace Medicine, 5th Edition. Editors Davis JR, Stepanek J, Fogarty JA, Blue 

RS. Wolters Luwer publisher, 2022. 
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