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Background

Data science has become increasingly prevalent in the field of biology, a field full of complex and
poorly understood systems. Recent advances in high throughput molecular biology techniques are
capable of generating large amounts of data that can then be analyzed to reveal patterns within
complex systems. This hypothesis-free and data-driven discovery approach of data science to build
and test models, based on observed patterns rather than sometimes biased presuppositions, allows
scientists to investigate and explore possible trends within their experiments that could never have
been possible with traditional workflow of hypotheses followed by data-processing. Planetary
Protection seeks to understand microbial life in extreme environments such as spacecraft assembly
cleanrooms and spaceflight. To do so, it is headed towards applying molecular biology techniques
to answering the questions that are needed for future missions.

Planetary protection requirements were first established during the Viking-era (1960-70s) and
are dependent on culture-based assays that provide limited information. Only organisms that can
be cultured in select laboratory conditions can be discovered, which leaves a vast majority of
microorganisms undetected, particularly those that are most likely to adapt to harsh conditions,
survive cleaning procedures, and are unlikely to grow in mild lab conditions.

Future missions with PP requirements that assess risk of certain types of organisms will require
more than just culture-based spore data. For these missions, extremophile organisms are the most
concerning and are of greatest interest.

A leading bioassay candidate for identifying organisms that can’t be cultured is metagenomics,
which uses DNA or RNA sequencing of the entire environmental sample to get a broad profile
of all organisms that are present. To do this, nucleic acids are extracted from a spacecraft or
spacecraft-associated surface, deep-sequenced with high-throughput methods, and the resulting data
is analyzed for taxonomic or functional identification.

Genomic data, or any type of -omic data, which is focused on generating biological data at
a deep level and for the entire community of microorganisms, can quickly become voluminous
(gigabytes per sample) and requires scalable computational and statistical methods to process.

While software (including a large number of open-source programs) exist to process genomic
data, finding new, fundamental insights within our specialized dataset would best be done by
statistical models and machine learning algorithms tailored to the challenges that NASA faces. We
need to build models of biological observations, repeatedly test, and validate them to recognize
patterns and extract meaningful inferences. Nuances of next-generation molecular biology methods
don’t yield black-and-white results that can clearly answer Planetary Protection requirements.

2



Current application of data science for PP

Challenges with metagenomics

While using metagenomics to identify spacecraft microbes has been something that PP has been
exploring for the past decade [1–3], there remain challenges that need to be addressed prior to
implementing it as a bioburden assay. Specifically, DNA sequencing of low-biomass samples
is prone to contaminant DNA from sources such as laboratory environments and reagents. The
resulting raw data from low-biomass samples is unavoidably noisy, with the contaminant DNA
often overwhelming and confounding results. When analyzed with metagenomic classifiers, even
extraction controls and no-template controls can contain several taxa of bacteria [4, 5].

The types of surfaces that are sampled for Planetary Protection purposes are typically spacecraft
hardware surfaces that have undergone cleaning procedures and can be considered "ultra-low"
biomass in the range picograms to nanograms of total DNA in each sample. The presence of
contaminant DNA and sequencing noise in these samples would skew results and could falsely
identify bacterial contamination on hardware and risk the hardware not meeting Planetary Protection
requirements for flight. Reliable and reproducible quantitative methods need to be implemented
on low-biomass metagenomic data to minimize noise and remove false positives in identified taxa.
Only then can metagenomics, as a highly informative and sensitive technique, be used for flight
project cleanliness guidelines.

How Data Science is used to address that challenge

In an effort to address the false positives that are prevalent in low-biomass metagenome samples,
there has been a recent effort at JPL to apply data science techniques to clean up contaminants
post-hoc. A pilot project was funded by the JPL Data Science group aimed at distinguishing
true positive taxa in metagenomic samples from false positives. The current generation of DNA
sequencers produce millions of short sequences, called reads. The project attempts to utilize genome
coverage, the number of sequencing reads mapped to a position in a known genome, as a way to
estimate the likelihood that a read was generated by an intact microbial cell. While the average
genome coverage is frequently used within algorithms in computational genomics, the complete
information available in coverage profiles is currently not exploited to its full extent. For Planetary
Protection compliance, only intact cells are considered; DNA fragments are not. Genome Coverage
Profiles (GCP) of intact organisms follow a Poisson distribution [6], while GCPs of any laboratory
contamination, residual fragments of DNA or organisms, do not. Therefore, the GCP of an organism
should be significantly different when it is truly present in a sample (as an intact cell) vs. when a
fragment of its DNA is present as contamination. The pilot project’s main goal was to leverage this
contrast in the GCP pattern to develop a machine learning model that can effectively distinguish
between signal and noise, i.e. DNA from intact cells vs. DNA fragments from reagents. Without
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machine learning, there would be limitations to applying such a GCP-based approach as actual
environmental samples typically contain upwards of 1000 different organisms, making manual
comparisons for each genome impractical. Therefore, an automated, unbiased approach is needed
to apply a GCP-based classification strategy for real-life application.

The methodology for the pilot project started with analyzing positive controls of a model
microbial community in 1) several DNA concentrations to understand the effect concentration has
on the ability to distinguish signal from noise and 2) a single concentration that were repeatedly
sequenced with each batch of spacecraft DNA samples as a standard across the numerous batches.
It was necessary to start with positive controls containing 10 known species in a mixed microbial
community in order to generate GCPs for both known true organisms and known contaminants/noise.
These were used to train and test various machine learning models.

GCPs were made by first gathering the genomes of the top 20 most abundant species within
each sample (or in the case of positive controls, the 10 expected species and 10 most abundant
contaminants). The most abundant species were determined using a Kraken2 and Bracken pipeline
with default parameters [7, 8] and includes all identified taxa, including potential false positives.
Well-assembled high quality genomes collected from RefSeq [9] of the 20 most prominent species
were concatenated into one file and used as a reference genome against which the raw sequencing
reads of the sample were mapped using BWA-mem [10]. This is done to find and filter out reads
that map to more than one genome with equal quality (multi-mappers). Reads that randomly map
to several genomes were removed as they are potential sources of noise because they may be
mapping to highly conserved regions shared by many taxa. The remaining reads were mapped again
to individual reference genomes from the top 20 list using BWA-mem [10] to generate coverage
information at each position of the genome.
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Figure 1: Genome coverage profiles from a positive control sample of known input. (a) and (b)
GCPs from true positives. (c) and (d) GCPs from noise

The coverage profile was passed as input to the models in the form of a sequence of 100 numbers.
Genome coverage plots were generated using Plotly [11]. Example GCPs are shown in Figure 1,
both from true positives (Fig. 1a,b) and from noise (Fig. 1c,d). Various machine learning models
that were tested included a Ridge Linear Classifier model, a One-Directional Convolutional Neural
Network (CNN), and a Long Short-Term Memory (LSTM) model. Prelimary results using a small
dataset for validation and testing show that intra-batch results are better than inter-batch results.
Example with Ridge Linear Classifer model is shown in Figure 2. Continued testing and adjustments
to the model are needed to confirm this method and improvements need to be made on several
fronts. For example, the genome coverage profiles and the total coverage could be improved if
fewer multi-mappers are removed. Removing multi-mappers is causing a steep drop in reads for
many samples and is problematic since it reduces coverage information non-uniformly, resulting in
lopsided values and non-quantitative results [12]. Longer reads or contigs from assembled reads
could be used so that individual reads map to fewer organisms. Another approach could be to split
the multi-mapping reads equally between each genome that it aligns to.
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Figure 2: Confusion matrices for Ridge Linear Classifier model preliminary results. (a) Vali-
dation results: Accuracy = 0.9, Precision(present) = 1, Recall(present) = 0.818, F1 score = 0.9 (b)
Test results: Accuracy = 0.8125, Precision(present) = 0.795, Recall(present) = 0.969, F1 score =
0.873

The main product of this pilot project has been a framework to take an aspect of metagenomic
data (in this case the coverage distribution) and thoroughly explored it to search for informative
patterns. These first steps pave the way for more detailed, complex and quantitative estimations of
microbial populations, even at low biomass. Generating, analyzing, and testing the large amount
of data required for this task with statistical rigor is only possible with data science and machine
learning. Visual analysis of genome coverage plots by eye is subject to user bias and can be
difficult to replicate. As biological research such as this relies more on big data, researchers will
find themselves increasingly leaning on computation methods and data science. The hope is that
integrating data science in the planetary protection discipline can equip the field with modern
molecular biology techniques that will benefit future flight missions.
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