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Abstract. Spaceborne atomic clocks and atom interferometers promise answers

to fundamental physics questions, with respect to general relativity, gravitational

wave astronomy, or dark matter, and can be exploited for manifold applications in

the fields of Earth observation and navigation. All these endeavors require highest

sensitivities, and entanglement-enhanced atomic quantum sensors offer an operation

in regimes fundamentally inaccessible to conventional sensors. We outline an agenda

to establish entanglement-enhanced sensors as irreplaceable components for future

metrological applications in space.
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I. INTRODUCTION: ENTANGLEMENT-ENHANCED SENSITIVITY

Atomic clocks and atom interferometers exploit the quantum nature of atoms for high-
precision sensing. Atom interferometers can be used to measure acceleration, rotation and
gravity. In this case, each individual atom in a freely falling ensemble is brought into a
quantum mechanical superposition of two quantum states that are separated in position
or momentum. Atomic clocks constitute today’s standard for time keeping and are rou-
tinely used as frequency standards. In contrast to atom interferometers, which use quantum
mechanical superpositions of external degrees of freedom, clocks use superpositions of two
internal states, like spin states. After a free evolution time, the respective quantum states in
both atom interferometers and atomic clocks are recombined, leading to an interference sig-
nal that depends on the physical quantity of interest. Longer times spent by the atoms in the
superposition state directly lead to higher measurement resolution, more sensitivity for atom
interferometers and narrower linewidths for atomic clocks. This time can be extended, for
example, in atomic fountains, drop towers with microgravity environment, parabolic flights
with airplanes, ballistic missiles, or satellites. Extremely long interrogation times and corre-
sponding resolutions can be expected by operating atomic clocks and atom interferometers
in space.

There is a broad range of applications of such spaceborne quantum sensors to fundamental
physics: They enable high-precision tests of Einstein’s equivalence principle [1] and can be
used for precise tests of general relativity [2–6]. New generations of different gravitational
wave detectors are proposed based on these quantum technologies [7–9] and can also be
used in the search for dark matter [10–14]. The spatial superposition inherent to atom
interferometers also allows tests of the limits of a quantum-mechanical description of our
world [15]. Application-oriented motivations for high-precision atomic interferometers are
satellite-based [16–21] and terrestrial [22–29] Earth observation, as well as navigation [30–
35]. Needless to say, atomic clocks are an enabling technology for global navigation satellite
systems that can, for example, be used for geodesy [36].

However, the achievable precision does not only depend on the interrogation time. Among
many technical parameters, there is a fundamental limit to the resolution imposed by intrinsic
fluctuations due to the quantum nature of atoms: the Standard Quantum Limit (SQL). This
limit is related to the number of atoms used for sensing; increasing the number of atoms by a
factor of 100 improves the resolution by a factor of 10. Since the available number of particles
is in many cases technically limited, or density effects eventually prohibit a further increase,
methods to surpass the SQL are of great importance. Surpassing the SQL is possible if
the entire ensemble of many atoms is prepared in an overall quantum state characterized
by specific quantum correlations between atoms: these non-classical correlations are called
metrologically-useful quantum entanglement.

Entanglement is a central concept in quantum theory and the unifying element of many
achievements in the second quantum revolution, such as quantum computing or communi-
cation [37]. Among the entire class of entangled states, the quantum states that enable a
sensitivity enhancement beyond the SQL [38] form the smaller subclass of useful entangled
states. Maximal useful-entanglement allows a factor-of-10 improvement in resolution with a
tenfold increase in the number of atoms. An ensemble of 106 optimally entangled atoms can
achieve a 1000-fold increase in resolution compared to its unentangled counterpart.

Such entanglement enhancements are assumed in many mission studies, such as for grav-
itational wave detection (20 dB improvement [39]), tests of Einstein’s equivalence principle
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(20-40 dB improvement [40]) and atomic clocks (20 dB improvement of absolute clock stabil-
ity [41–43]).

In this topical white paper, we highlight the need to strategically develop the technology
of entanglement-enhanced sensors from laboratory experiments to compact sensors, and test
them in microgravity environments. This development would establish entangled atomic sys-
tems as an available resource for a wide range of high-precision measurements in space. The
white paper summarizes state-of-the-art sources for entanglement-enhanced atomic clocks
and atom interferometers in Sec. II, and describes potential applications for inertially sensi-
tive atom interferometers (Sec. III) and clocks (Sec. IV). Section V gives an outlook on the
development of entanglement-enhanced quantum sensors for space applications.

II. SOURCES OF ENTANGLED ATOMS

A particularly robust and promising class of metrologically-useful entangled states is that
of spin-squeezed states [44, 45]. The generation of such atomic samples has been demon-
strated along two main directions [46]: atom-light interaction and atomic collisions. The
former has been applied to generate spin-squeezed states or W states in gas cells [47, 48] and
laser-cooled samples [49–52]. The current squeezing record of 20.1 dB has been obtained by
exploiting the coupling between the light field in a cavity and an atomic ensemble that is
trapped in the cavity [41]. While those results were obtained in alkali atoms, recent success
was achieved in generating entanglement on optical clock transitions. Squeezing of 12.9 dB
was created in 171Yb [53], and subsequently transferred to the optical clock transition, demon-
strating a metrological gain of 4.4 dB for an actual frequency measurement [43]. In trapped
ions, metrologically-useful entanglement of up to 14 ions has been demonstrated [54] as well
as Rabi spectroscopy of a clock transition employing two entangled ions [55]. Recently, a
metrological gain of 2.02(8) dB over a classical interferometer has been demonstrated with
26 entangled ions [56].

The collisional interaction in atomic Bose-Einstein condensates can be used as a nonlin-
ear interaction for the generation of entangled quantum states [46]. Atomic collisions can be
exploited to generate entanglement between external degrees of freedom. The creation of en-
tangled momentum pairs has been demonstrated with Helium [57–59] and Rubidium [60]. Al-
ternatively, entanglement can be generated via atom-atom interaction in highly-controllable
trapped systems, such as in a double well trap [61, 62].

Entanglement can also be generated in internal degrees of freedom. The creation of
spin-squeezed states was demonstrated via the one-axis twisting evolution [44] that exploits
the differing collisional properties of two spin states [63, 64]. Alternatively, spin changing
collisions are used to generate spin-squeezed states [42, 65–67] or Twin-Fock states [68, 69].

An entanglement-enhanced operation of inertially-sensitive atom interferometers requires
the generation of entangled momentum states that are matched to the employed states in the
interferometer [70, 71]. This is possible by generating entangled momentum states directly,
and by matching the states to the interferometer or vice versa. Alternatively, entanglement
can be generated in internal degrees of freedom and transferred to momentum space [72].

In summary, the generation of atomic sources for entanglement-enhanced quantum sensors
has recently witnessed a fast development of squeezing methods, available atomic sources,
and applications to clocks and interferometers. However, the demonstrations were mostly
performed in proof-of-principle laboratory experiments, and a development of compact sen-
sors and their test in zero-gravity environments is needed to exploit the potential of entangled
atomic systems for high-precision measurements in space.



3

III. ENTANGLEMENT-ENHANCED ATOM INTERFEROMETERS IN SPACE

Unlike classical electrostatic accelerometers, atom interferometers provide absolute mea-
surements for inertial sensing and applications. Therefore, they are expected to be deployed
in space as classical accelerometry missions are reaching their accuracy limit. The use of en-
tangled sources for space quantum gravimetry can help improve the accuracy and long-term
drifts of such devices. On the other hand, the modest sensitivity of SQL-limited interfer-
ometers is constrained on ground by several technical limitations such as the vibrational
noise, putting an upper bound of few ms on the interrogation time. In space, one expects to
operate atom interferometers with interrogation times longer than ten seconds, and to push
their instability well below the SQL. Applications in gyroscopy, gravity gradiometry, space
gravimetry are expected to benefit from such a boost.

Einstein’s theory of general relativity is a cornerstone of our current understanding of the
physical world at macroscopic scales. However, until today no consistent theory reconciling it
with quantum field theory has been found. Most unification theories are expecting a violation
of general relativity. Tests of the Einstein Equivalence Principle are thus found at the heart
of numerous space missions, e.g., he Space–Time Explorer and QUantum Equivalence Space
Test (STE-QUEST) [1] or the Atomic Clock Ensemble in Space (ACES) [73, 74]. As these
fundamental tests target the SQL, the use of entangled atomic sources will push the state
of the art.

An infrasound, spaceborne gravitational wave detector based on atom interferometers is
expected to cover the frequency band between 0.1 Hz and 10 Hz, hence filling the sensitiv-
ity gap between the space-based Laser Interferometer Space Antenna (LISA) [75] and the
planned third generation ground-based laser interferometer (Einstein Telescope) [76]. This
will add a new capability to gravitational wave astronomy that could answer long-standing
questions on cosmology involving dark energy, the equivalence principle, cosmic inflation,
and a grand unified theory. To access the required strain sensitivities relevant for these
observatories, it is necessary to have atomic sensors operating at the 1 µrad/

√
Hz. This can

be translated to a flux of ultra-cold atoms of 1012 s−1 [39], which exceeds the state of the art
by a few orders of magnitude and motivates using entangled sources to surpass the SQL.

Matter-wave experiments have so far confirmed the validity of quantum mechanics, but
they do not yet rule out hypothetical modifications of the theory that would prohibit quan-
tum superpositions, alleviate the measurement problem, and reinstate classical realism at
macroscopic size and mass scales. Spontaneous collapse models form a well-studied and
minimally invasive class of such modifications [77], predicting the loss of spatial coherence
in many-body systems at a rate that amplifies with mass, possibly as a consequence of grav-
ity [78–83]. Currently, the strongest parameter bounds on collapse models are achieved in
optomechanical noise sensors such as LISA Pathfinder [84]. The superposition of a large mass
over spatially separated modes, interfering heavy compound particles or maximally entan-
gled NOON states of atom condensates, would be a highly sensitive experimental test [85].
The collapse rate would grow with the square of the total system mass. A similar mass
dependence could be reached in a more practical scenario with squeezed, interacting quan-
tum gases in spatially overlapping modes, provided that the interaction strength can be
controlled and individual atoms can be detected with high precision [15]. A space-based
experiment could offer long interrogation times, low interaction strengths, and a low level of
environmental decoherence, thus probing collapse models to an unprecedented degree.
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IV. ENTANGLEMENT-ENHANCED ATOMIC CLOCKS IN SPACE

Atomic clocks are at the core of current time-keeping systems and have been imple-
menting the International System of Units’ definition of a second for over 50 years [86].
Since then, various approaches towards high-precision measurements have been developed,
such as microwave atomic clocks, atomic fountain clocks [87], ion clocks and optical lattice
clocks [88]. Besides their relevance for novel technologies, they have evolved into a key player
for ground-based tests of fundamental physics, such as general relativity [89], gravity [90],
Lorentz symmetry [91] or the search for variations of the fine structure constant [92, 93]
and dark matter [94]. From early on, atomic clocks have been used in airborne experiments
to observe effects of the theory of relativity [95, 96]. Spaceborne missions that test general
relativity are one of the milestones of modern physics and technology [3, 4]. Moreover, they
are an enabling technology for global navigation satellite systems with direct implications on
geodesy [36]. In such satellite systems, they constitute an already implemented network [97]
with a wide range of applications, also in fundamental physics [8, 12, 14]. In fact, the most
accurate test of the universality of gravitational redshift, one of the key assumptions of
general relativity, has been tested with clocks upon highly eccentric satellites from global
navigation satellite systems [5, 6]. These inspiring developments have to be seen in light of
a strong drive towards ambitious space missions [98] to demonstrate novel technologies of
atomic clocks in orbit or space and test fundamental physics, such as the Atomic Clock En-
semble in Space (ACES) [73, 74], the Cold Atom Clock Experiment in Space (CACES) [99],
the Deep Space Atomic Clock (DSAC) [100] or the development of the Space Optical Clock
on ISS (SOC-ISS) [101]. Spaceborne clocks have already played a crucial role for proposals
in the past [1, 102] and are key to current ones such as the Space Atomic Gravity Explorer
(SAGE) [103] or Fundamental physics with an Optical Clock Orbiting in Space (FOCUS).

Atom interferometers discussed in Sec. III and atomic clocks are both quantum sensors
that share the same fundamental working principle. Both concepts can be combined [104–
106] to interfere internal and motional states simultaneously, giving rise to new types of tests
of time dilation with quantum systems [107–109]. Extensions of such schemes to differential
measurements [110] are targeted at an operation close to the SQL.

As explained in Sec. I, the precision of atomic clocks using independent atoms is bounded
by the SQL. Consequently, the enhancement of sensitivity of atomic sensors [46, 111]
also encompasses entanglement-assisted atomic clocks as one of the prime applications.
Entanglement-enhanced atomic clocks have been demonstrated in proof-of-principle exper-
iments [41, 42, 112–115] in various systems and using different entanglement-generation
methods explained in Sec. II. These experiments have clearly demonstrated the possibility
to overcome the SQL of phase sensitivity for a relatively short clock-interrogation time.

To take full advantage of entanglement-based schemes, it is essential to operate atomic
clocks close to the SQL. In many applications, the current limit to sensitivity is noise, for
example, caused by the interrogation laser. However, many ambitious experiments of fun-
damental physics require differential measurements, where common-mode effects are sup-
pressed. Nevertheless, to compete with the best conventional state-of-the-art clocks, it is
necessary i) to develop entanglement generation methods that are fast enough to not sub-
stantially add dead times [116]; ii) to protect entangled states against decoherence sources
[117] such that the use of entanglement does not pose limitations to the interrogation time;
and iii) to develop readout protocols that optimally exploit the phase information encoded
in entangled states [118–124]. Entanglement-assisted strategies are still at the focus of state-
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of-the-art research for a new generation of atomic clocks [43, 125] and have not yet evolved
into a technique that is employed in metrological sensors.

Especially ambitions space missions, along the lines of the ongoing and planned efforts
sketched above, require minimizing technical noise. Some of the proposed techniques also rely
on differential measurements with common-mode suppression of deleterious effects. Every
experiment will therefore try to operate close to the SQL or increase the sensitivity by
other means. Consequently, spaceborne setups that are targeted at fundamental research
will benefit from the implementation of sources of entangled atoms. As such, we expect
entanglement-enhanced atomic clocks to play a crucial role in future missions targeted at
gravitational wave detection [8, 9], dark matter searches [12], tests of general relativity [5, 6],
or other fundamental physics and applications.

V. CONCLUSION

In conclusion, the broad range of applications of atom interferometers and atomic clocks,
ranging from fundamental tests of physics to Earth observation and navigation, requires
improvements of their sensitivity. Entangled atoms offer such an improvement, as they enable
measurements with a resolution beyond the Standard Quantum Limit. The entanglement
enhancement can be exploited in various directions: it is possible to obtain a higher resolution
while maintaining the number of employed atoms. Furthermore, it is possible to obtain the
same resolution at reduced atom number, possibly mitigating systematic density effects.
Alternatively, the same resolution can be acquired in shorter averaging time, resulting in an
increased measurement bandwidth. Finally, entanglement enhancement can be employed to
reduce the interrogation time, which may lead to more compact set-ups, important for space
applications.

Apart from the achievable improvements in the resolution, entangled atomic systems
also provide qualitatively different probes for fundamental tests of physics. Entangled multi-
particle states are specifically sensitive to decoherence, and this sensitivity can be exploited to
search for fundamental sources of decoherence, for example in the framework of spontaneous
collapse theories. Furthermore, entangled atomic states may serve as outstanding probes
of the gravitational interaction. Spatially separated entangled atomic ensembles may sense
the effect of general relativity on quantum-mechanical objects on scales, where the effects of
spacetime curvature are not negligible. Thereby, such systems offer one of the few approaches
for experimental tests of how quantum-mechanical objects couple to post-Newtonian gravity.

Leveraging the potential of entanglement-enhanced quantum sensors for space applica-
tions poses a number of challenges for the near future. i) Entangled atomic sources, so
far mostly demonstrated in proof-of-principle experiments, must be integrated with high-
precision interferometers and atomic clocks to exploit the demonstrated 20 dB squeezing
on ground. ii) The technology must be integrated into more compact, robust sensors with
low power consumption. iii) Entanglement-enhanced sensitivity must be demonstrated in a
zero-gravity environment, following the pioneering experiments on drop towers, zero-g eleva-
tors, parabolic flights, ballistic missiles, satellites, and the International Space Station. An
exciting perspective would be a future extension of the BECCAL program to demonstrate
the readiness of the technology on the apparatus at the International Space Station. iv) An
early consideration of entangled sources in the design phase of satellite missions with atomic
sensors. The presented program will establish entanglement-enhanced metrology as an in-
valuable resource for future high-precision measurements with atomic quantum sensors in
space.
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B. Lipphardt, C. Lisdat, J. Lodewyck, O. Lopez, H. S. Margolis, H. Álvarez-Mart́ınez, F. Mey-
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[38] L. Pezzé and A. Smerzi, “Entanglement, nonlinear dynamics, and the Heisenberg limit,”

Phys. Rev. Lett. 102, 100401 (2009).

[39] B. Canuel, S. Abend, P. Amaro-Seoane, F. Badaracco, Q. Beaufils, A. Bertoldi, K. Bongs,

P. Bouyer, C. Braxmaier, W. Chaibi, N. Christensen, F. Fitzek, G. Flouris, N. Gaaloul,

S. Gaffet, C. L. Garrido Alzar, R. Geiger, S. Guellati-Khelifa, K. Hammerer, J. Harms,

J. Hinderer, M. Holynski, J. Junca, S. Katsanevas, C. Klempt, C. Kozanitis, M. Krutzik,
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atoms in an optical fiber cavity,” Science 344, 180–183 (2014).

[53] B. Braverman, A. Kawasaki, E. Pedrozo-Peñafiel, S. Colombo, C. Shu, Z. Li, E. Mendez,
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[106] I. Pikovski, M. Zych, F. Costa, and Č. Brukner, “Time dilation in quantum systems and

decoherence,” New J. Phys. 19, 025011 (2017).

[107] A. Roura, “Gravitational redshift in quantum-clock interferometry,” Phys. Rev. X 10, 021014

(2020).

[108] S. Loriani, A. Friedrich, C. Ufrecht, F. Di Pumpo, S. Kleinert, S. Abend, N. Gaaloul, C. Mein-
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