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Space exploration and settlement of other planets will require production of fresh, ready-to-
consume crops for a more sustainable and Earth-independent food system and supply chain. In 
addition, plants can provide multiple regenerative life support functions such as air revitalization 
and water recycling, further contributing to sustainable exploration. Communication time lags, 
limited crew time, and system complexity will prohibit human operation and maintenance of these 
systems, whether local or remote, making autonomy critical to their efficiency and success during 
deep space mission operations. Artificial intelligence can enable the safe, reliable, efficient, and 
autonomous production of healthy, high-quality crops and plant microbiomes, while reducing crew 
time, mass, volume, and power. Artificially intelligent agents can manage plant health through 
multiple life cycles by predicting, preventing, detecting, diagnosing, and responding to plant stress 
and system faults; and can optimize crop production by controlling the environment and 
scheduling crop or system maintenance. This paper discusses and recommends critical areas of 
research and development including sensor technology, data mining, machine learning, edge 
computing, robotics, and data and knowledge management, to realize space-viable autonomous 
controlled environment agriculture (CEA) in the next decade. 
For semantic reference, autonomy is the ability of a given system or entity to achieve outcomes 
without direct control or intervention. Artificial intelligence (AI) is the ability of an artificial 
system or entity to rationally generate actionable insight that can be used to solve a problem or 
make a decision based on provided inputs. Machine learning (ML) is a subset of artificial 
intelligence (AI) that applies algorithms to data sets to rationalize and learn from the provided data 
and improve its accuracy or efficiency over time. Automation is the application of technology, 
programs, robotics, or processes to achieve outcomes with minimal human input. Robotics is the 
design and operation of robots, machines that perform programmed physical-mechanical tasks. 
Goal 1. Autonomously Assess Plant Health & Safety 
AI-powered plant growth chambers can recognize plant health and detect disease by taking 
advantage of data feeds from sensor networks, saving precious crew time. Important objectives for 
the next decade will be to A) use “the plant as a sensor” to inform automated control of the plants 
environment; B) incorporate data from novel sensors to better understand plant health and status; 
and C) monitor, understand, and manage the plant-microbiome interaction.  
Objective 1A. Characterize Plant Health and Status from Available Data 
Current and future space growth chambers will be heavily instrumented. A wealth of sensing 
technology exists or is emerging that can observe the health and status of plants, including 
metabolism, biomass productivity, growth, morphology, phenology, nutritional quality, stress, 
pathology, and environmental (shoot and root zone) conditions. Available and emerging sensing 
capabilities include structural imaging (ToF, lidar), spectroscopy (multispectral, hyperspectral 
raman, fluorescence, etc.),  atmospheric sensors (CO2, O2, pressure, VOCs, etc.), water quality 
monitors (conductivity, nutrients,  pH, dissolved gases), transpiration and water potential sensors, 
quantum sensors, and ‘omics platforms (nucleic acid, protein and metabolite sensing) (Patricio 
et.al 2018; Cho et al., 2018; Weng et al., 2018). Data fusion techniques and ML algorithms (e.g., 
regression, classification, ensemble learning) provide a more actionable picture or state estimate 
of plant health and status. Research is needed to determine how AI-powered CEA can use the 
‘plant as a sensor’ to quickly, accurately, and consistently identify and diagnose abiotic or biotic 
stress, alert system operators, recommend interventions for crop loss avoidance, or recommend 
actions for enhancing performance, given plant and hardware models (Objectives 2A and 2B).  
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Objective 1B. Improve Sensing Capabilities 
Improved sensing capabilities are needed to more readily and rapidly recognize and diagnose plant 
health and status, especially stress and pathology, microbiome health, root zone development, 
nutritional quality, and food safety. Visual symptoms that can be detected by crew may appear 
several days after stress begins (Kumar P. et al., 2021; Carillo, 2020), forfeiting the opportunity 
for early prevention or treatment of disease or injury. As novel sensing technologies emerge in the 
fields of optics, spectroscopy, electro- and biochemistry, electromagnetics, and multi-omics, they 
must operate within mission and spacecraft constraints (e.g., mass, volume, power, and 
bandwidth). Accurate, precise, and reliable sensors are needed that can observe plant canopies and 
root zones in small chambers; respond rapidly; operate autonomously with little to no crew time 
for sample preparation, operation, calibration, or maintenance; and operate with little to no 
consumables. In addition, novel sensors must be robust to the nominal and off-nominal spacecraft 
environment, characterized by high levels of radiation, high humidity and CO2 levels, fluctuating 
pressures, variable gravity regimes, and intermittent power loss.  

Objective 1C. Understand, Monitor and Manipulate the Plant-Microbiome 
The plant-microbiome can support or hinder plant growth and health. Beneficial microbiomes will 
require active assistance, while serious infections require early detection and mitigation to avoid 
crop or yield loss. Research is needed to determine how machine learning and AI can understand, 
monitor, and manipulate the plant microbiome interaction throughout the plant life cycle (Marcos-
Zambrano, et al., 2021; Carrieri, et al., 2021; Souza, Armanhi, & Arruda, 2020; Moreno-Indias et 
al., 2021). Specific research areas include:  
● Recognition of the difference between “healthy” and “unhealthy” microbiomes, 
● Determining the core members of a healthy plant microbiome (de Souza, et al., 2020) 
● Quantifying the effects of plant genotype, phenotype, and environmental conditions on 

microbiome health and species composition and dynamics (Khodadad et al., 2020).  
● Optimizing yield and quality (nutrient composition, bioavailability, digestibility, food safety).  

 
Goal 2. Optimize Autonomous Growth Systems 
Artificial intelligence can turn novice growers or autonomous systems into expert growers 
(Hemming et al., 2020). AI-powered systems can autonomously manage environmental control 
and maintenance activities for optimal crop and hardware performance (yield, quality, longevity, 
and efficiency) during nominal conditions and mitigate biotic or abiotic anomalies and faults 
during off-nominal conditions (e.g., plant stress or hardware failure). Important objectives for the 
next decade include the prediction and optimization of crop and growth chamber performance.  
Objective 2A. Predict and Optimize Crop Performance 
Considerable progress has been made in controlled environment space agriculture after decades of 
research and development (Zabel, 2016). In addition, advances in AI, edge computing, internet of 
things (IoT), and robotics have led to the automation of nearly all tasks in terrestrial indoor 
agriculture, from planting to harvest. These data-driven, AI-powered CEA systems can manipulate 
crops, manage nutrients and irrigation, and provide environmental control using a variety of 
sensors. AI affords autonomous crop selection and CEA resource management. As space plant 
habitat technology continues to improve, so must the predictive models of crop performance and 
growth chamber operation that inform growth chamber design and operation.  
With accurate, robust crop performance models, data-driven, AI-powered CEA can provide 
decision support to an unskilled crew member or autonomous growth chamber, saving crew time, 
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improving crop performance, mitigating crop loss, and reducing consumption of limited resources 
such as water and power. Examples of data-driven, AI-powered decision support tools include 
digital twins (DT), case-based reasoning, linear programming, or other optimization algorithms. 
Through data-driven analysis, an AI-powered CEA might recommend environmental setpoint 
changes, crop maintenance schedules, interventions to mitigate detected stress or disease (e.g., 
reducing humidity to prevent fungal infection), and the selection of plants and seeds with the 
greatest potential for successful growth in space (Langridge and Fleury, 2011; McCormick et al., 
2021; Vos et al., 2010; Yu et al., 2019). Data-driven, AI-powered CEA can assist in making rapid, 
rational, and consistent decisions from learned knowledge, given unforeseen circumstances or 
novel data. It can also use models to forecast yields and growth stages (such as harvest readiness), 
predict disease onset (prognostics), or assess risk of crop loss (Abade et al., 2021). Finally, to 
maintain its value to the crew as missions evolve, the data-driven, AI-powered CEA should be 
capable of updating crop models as new data becomes available to accommodate changes in crop 
behavior, production goals, crew preferences, or other mission constraints. 
Data-driven, AI-powered decision support requires real-time knowledge of plant-environment 
state and predictive models of crop performance, as a function of available state parameters. The 
relationships between crop performance, controllable growth conditions and interventions, and 
uncontrollable factors throughout developmental stages (e.g., germination, vegetative, flowering, 
fruiting), off-nominal growth, and periods of CEA inactivity or dormancy are complex and 
dynamic. Important crop performance metrics (or responses) for multi-objective optimization 
include seed viability, germination rate, growth rate, yield, harvest index, calorie content, 
nutritional density, palatability, safety, stress tolerance and resource consumption (especially 
water and energy). Controllable factors that influence crop and microbiome performance include 
plant genotype, growth conditions (e.g., temperature, humidity, light intensity, photoperiod, 
fertilizer composition, pH, air flow, CO2/O2 partial pressure, dissolved O2, root moisture, vapor 
pressure deficit, etc.), and maintenance schedules (e.g., planting, fertilizing, watering, pruning, 
pollinating, or harvesting). However, crop performance might also be affected by uncontrollable 
factors such as cabin temperature and pressure, changes in the microbiome, VOC contamination, 
abiotic or biotic stress, or hardware anomalies (e.g., loss of water pressure). Thus, the ‘optimal’ 
growth conditions and maintenance schedule will likely change but can be managed with data-
driven algorithms such as model predictive control (Piñnon, 2005). 
Robust learning models require the application of data mining and machine learning tools (see 
Objective 1A) to large training and testing datasets collected from plant growth experiments in 
space relevant conditions. The creation of specific datasets for space relevant environments is a 
critical area of future research.  
Objective 2B. Predict and Optimize Growth Chamber Performance 
The need for robust life support systems increases with mission duration and distance from Earth. 
Hardware and software robustness, achieved through reliability, resilience, and survivability 
across a wide range of usage conditions, will be a critical area of research and development as 
growth chambers transition from research platforms to operational crop production systems 
(Escobar et al., 2017; Escobar et al., 2019).  
Growth chamber components need to have a sufficient life under normal conditions (reliability) 
but also the ability to maintain performance in unanticipated conditions (robustness) and recover 
from degradation or failure (resilience). In addition, mass constraints limit the ability to carry spare 
parts. Thus, the development of rugged, reusable, resilient, and repairable space CEA components 
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must be prioritized. Validated system performance models and reliability analyses predicting 
performance degradation and time to failure are needed to inform hardware architecture design, 
component selections, operations and resource management protocols, and hardware maintenance 
schedules. Prior to mission deployment, significant hardware reliability and robustness testing in 
relevant environments must also occur to verify chamber performance. 
Terrestrial advances in autonomous technology for CEA, including robotics, sensors, data-driven, 
AI-powered analysis, data processing, and automation technologies are rapid and are outpacing 
space technology development (Fountas, S, 2020). Terrestrial robots can reduce human labor for 
seed sowing, grafting, transplanting, spraying, pest control, weed removal, thinning, pollination, 
and harvesting (Kumar R. et.al, 2021). Most of this technology is too massive for a volume 
constrained space habitat, too energy intensive, or intolerant of the high vibration loads and 
radiation exposure inherent in space travel. Research and development are needed to miniaturize 
and ruggedize state-of-the-art terrestrial CEA robotics, sensors, and data handling for space use 
(Monje, 2019). In addition, autonomous CEA equipment must be interoperable with spacecraft 
computing and communications infrastructure. 
In flight, data-driven, AI-powered system health management can detect, isolate, compensate, and 
recommend mitigation for off-nominal events and anomalies, such as environmental excursions, 
and faults, such as sensor or pump failures, providing needed resilience. In addition, isolated 
spacecraft cabins present a particularly ‘fertile’ environment for pathogen growth and outbreaks, 
presenting a unique challenge for space agriculture. This is especially the case for dormant periods 
when hardware is not in use. Chambers will need to be restored to their initial state prior to starting 
new growth cycles. Robust chambers that can manage waste, autonomously clean, and disinfect 
soiled, wetted surfaces, and manage transitions between dormant and active use are particularly 
needed for system longevity.  
Goal 3. Manage Data and Knowledge Repositories at Scale 
To effectively infuse AI into autonomous plant growth systems, collected data and knowledge 
obtained must be properly managed, ensuring accessibility, usability, integrity, security, and 
adaptability over time and across systems. Thus, two key objectives are to (A) create plant data 
and knowledge repositories, and (B) create information architectures for space plant production. 
A solid information architecture designed specifically with space plant growth use cases in mind 
is key to creating AI-powered systems with lasting and continued value. This architecture must 
contain a knowledge repository from which intelligent agents can generate actionable insight. Over 
time, new behaviors, environmental factors, model drift or changes in mission context will alter 
the effectiveness and value of initial training sets. Autonomous plant growth systems will need to 
compensate for change by refining knowledge contained in the information architecture. Learned 
information should be catalogued in a knowledge and solutions repository which is documented, 
accessible, usable, and explainable. AI-powered plant growth systems must also operate with 
limited computing power and storage by utilizing technologies like edge computing. Finally, 
proper data governance policies must be in place to maintain the security, integrity, and 
effectiveness of the data, learning model and system over time. 
Objective 3A. Establish Information Architecture and Create Knowledge Repositories 
The quality and organization of data upon which AI systems rely is critical for efficient analysis 
and the generation of useful, actionable insight. Building and maintaining a robust collection of 
standardized reference data, supplemental ‘learned’ knowledge and solutions repository is key in 
maintaining the value of an AI-powered system. Collection and utilization of large training and 
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operational data sets and complex predictive models prior to and during autonomous space crop 
production will require a sound knowledge repository and information architecture, data standards, 
and ontologies (Cooper et al., 2018; Davidson, 2003). First, system developers must understand 
what data, metadata, and knowledge (e.g., models) need to be collected and stored, and with what 
granularity, frequency, and quality, for it to have value over time. Next, system developers need 
an information architecture that includes standards for organizing and storing data, metadata, and 
knowledge. How do scientists capture data and models such that they can be integrated and used 
across different data types, experiments, or platforms, such as the NASA GeneLab? How do CEA 
developers capture and integrate the horticultural knowledge of expert growers in a language an 
AI can understand, apply, and update? How do they reduce data for limited storage and processing 
availability (e.g., edge computing)? Finally, CEA operators must have access to visualization and 
data mining tools to assist in the interrogation and exploration of data, metadata, and knowledge. 
While many groups such as AgMIP (www.agmip.org) and Planteome (www.planteome.org) are 
developing metadata standards, space CEA relevant knowledge repositories, information 
architectures, and data standards are still needed. 
Objective 3B. Develop & Integrate AI-Powered Architectures at Scale 
Standardization of data architectures, data organization methods, data governance and retention 
policies will enable uniform development and deployment of data and models across multiple 
systems, environments, and interoperable platforms. Tools are needed for combining, modeling, 
and visualizing complex data sets in-situ from vast and often discrete data sources with limited 
computing resources and storage, using space-viable edge computing technology.  
Data-driven, AI-powered space CEA architectures must be reliable, effective, robust, and 
interoperable with other spacecraft subsystems, such as life support. Architectures must 
accommodate human intervention when needed (or desired), using adjustable autonomy, and 
provide useful, timely information to their human users. The underlying architecture for the 
hardware, machine learning pipeline and other associated systems should be uniform, re-usable, 
modular, scalable, resilient, secure, able to operate concurrently, and adaptable (able to adjust in 
real time). Monolithic design and patterns should be avoided in favor of scalable modularity and 
flexible processes where appropriate. Techniques such as software containerization, 
microservices, event driven architectures, and coding/programming languages that natively 
support concurrency enable fault-tolerance, high availability, and hot-swapping if necessary.  
Digital twins (virtualized models of a physical system or entity) for both the controlled 
environment (growth chamber) and plants themselves can aid in assuring nominal process 
behavior and allow closed-loop control and decision support. Digital twins can deploy and 
integrate with physical systems in real-time, leveraging live data feeds from sensor networks and 
other real-time data sources. Several fields have successfully adopted DTs, including the chemical 
processing, pharmaceutical, and aerospace industries (Glaessgen & Stargel, 2012; Datta, 2016); 
however, realization in biological systems, particularly for space, has remained at a 
conceptual/proof-of-concept technology readiness level (TRL 2-3). Recent advancements in 
wireless and biosensor networks, increases in computing power, and real-time analytics with 
machine learning and edge computing has paved the way for more advanced DT research and 
development in support of autonomous space plant production systems. 
 
 

http://www.agmip.org/
http://www.planteome.org/
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