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Scientific synergies with GDC

Global causes and consequences of solar wind- g
magnetosphere-ionosphere-thermosphere i
coupling 2
« Local reconnection creates global consequences &
» Large-scale energy transfer via EM waves
* Field-aligned currents 0.4[
0.2f =}
Time dependence and localization : S
» Explosive energy release in substorms 0'0; S
« Auroral Acceleration 0.2 %
-0.4: ....... L B, | &

The interchange between the magnetosphere '/ /¢ 718" 17207 1728
and thermosphere through the ionosphere
« Storm-time dynamics

* Energetic particle precipitation

« Thermospheric driving
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Solar wind Magnetosphere
lonosphere Link Explorer (SMILE)

Co-PIl: Graziella Branduardi-Raymont (MSSL)

« ESAJ/CAS with 2023 launch to study the global scale
dynamic response of the magnetosphere to solar wind
variability
Soft X-ray Imager to image the solar wind driving
In situ package for solar wind and IMF
UV global auroral imager for magnetospheric dynamics

05:00 10:00 15:00 20:00 01:00
Time (UT)




* Field-line Diffusion * lons and Electrons Decouple
* Hall Currents & Fields

* Electron Acceleration

Variable "Resistivity" * lon energisation

Local process with \\\'!/
global consequences: @ |
—

|Electron Regime lon Regime

Direct and Indirect
energy transfer

Fluid Regime
* Driven Inflow
* Accelerated Jet Outflow

« THEMIS fluid scales - Changed Topology
 Cluster ion scales
« MMS electron scales

 We need to understand energy
transfer with global context

Courtesy: S. Schwartz, cross-scale team




Large-scale fleld-allgned McPherron et al., (1973)
currents: the substorm

example

» Understanding the coupling of the
magnetosphere to the ionosphere
remains an outstanding issue

 And one we are only beginning to

Field aligned
currents
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understand
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Murphy et al. [2013]

Courtesy: DMSP/NOAA. N&hethee \tisHafimnan2002)
coincident with the statistical Gjerloev & Hoffman
(2002) map




Single spacecraft FAC assumptions

« For a sufficiently large current sheet, v .
Ampere’s law can be simplified to v @
dB . ' O,
_a_xy = HoJz X
e b v IO A A '
» Perturbation field is from FAC only (_._.T._.__.r—
V
» Current is sheet-like and field oo ®

perturbation is in one component

« Spacecraft passes normally through
current sheet

« Current does not move, rotate or
change amplitude during crossing



Lessons learned from Swarm: when are our assumptions
violated?

Y lz
Z B} g . Cross-scale coupling provides driving
X — o and feedback
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The magnetospheric substorm: explosive
energy release into the ionosphere
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Primary: Diaghosing substorm
auroral acceleration

From ground measurements, we have
shown that substorm onset starts with
auroral and magnetic waves

— Same time, same place,same frequency,
same characteristics

We know the particle characteristics of
wave-driven auroral acceleration

Require observations of aurora with
simultaneous particle measurements of
the precipitating electrons (and ions)
that cause it

-|Equatorward arc

Spatially periodic
Brightening (“beads”)
-

plasma instability

14:02:112 UT

Beads grow and benc

R

Beads form vortex

.
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Which breaks-u

14:06:18 UT

Henderson et al. [2009]



Substorm physics from the ground and lessons

* One of the great 10:17:30 U7
successes of the THEMIS .,
mission is the clear £
ground-based component
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Distinguishing between drivers - Alfvén wave

driven aurora

Energy flux in Shear Alfvéen
Waves

Energy flux In — =
~keV el \

3R,

E geocentric

4 R
2R

C altitudes

Shear Alfvén Waves become
dispersive as they approach
Earth, and may transfer energy to
electrons
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Wave-driven acceleration
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E geocentric

7000 km

6000 km

5000 km
4000 km
0 km

N

GDC altitudes

Quasi-static electric potential
structures linked to density cavity
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Distinguishing between auroral drivers

Quasi-static potential « Shear Alfven Waves
drops — broadband electron
—_ mono_energetic acceleration

electron acceleration

=
Quasi-
static

ELECTRONS

ELECTRONS

L_. LTy

Newell et al. [2009]
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Energetic Particle Precipitation: where do
electrons go?

The Earth's Electron Radiation Belts

International
.. Space Station

Gallileo ..
GPS

Earth Radii
o
| L L L L L L L |

Horne [2007], Nature Physics

Earth Radii



The importance of energetic particle (EPP)
precipitation on atmospheric chemistry

« Understanding a 60 year physics problem Particle precipitation
e Understanding the natural variation in ‘

global temperatures Production of NO, and HO,
- Understanding the role of EPP in the L

destruction of ozone Destruction of mesospheric
« EISCAT 3D and upper stratospheric O

v

Change in dynamics
mesosphere & stratosphere

v

Implications for
Climate

Thermosphere N, + N,N




In-situ EPP and HOx measurements

 NOAA POES measurements usually used to estimate particle precipitation

» ~835 km Sun synchronous orbit
* Numerous approximations required for scientifically useful data

* Close relationship between EPP and HOx
* Input into chemistry climate models reveal surface temperature redistribution

through EPP
Kp<4

OH medians [ppbv] : | I
0.6 0.8

1 1.2 1.4 1.6

80

40

Latitude
o

Clilverd et al. [2014]
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Energetic Particle Precipitation and Polar
Surface temperatures

* Chemistry Climate models show that
when EPP are included, surface
temperature variations of -0.5 to +2 K,
relative to the no precipitation case.

Rozanov et al. [2005]

« Experimentally verified during the
winter months when NOx and HOX ¢
are long-lived :

Seppala et al. [2009]




Secondary: Particles inside the loss cone

« All* currently flying instruments measure only a small fraction of
precipitation, and assume symmetry

« Able to only measure strong precipitation events
« Weak precipitation thought to be crucial

.. Typical Measurement

Full Measureme
Requirement

Electron Pitch Ang
Examples: NOAA POES 0°

Courtesy: Craig Rodger



Feedback on magnetospheric
dynamics
« Reconnection, energy loading and

electromagnetic wave penetration
and radiation belt morphology

« Don't forget EISCAT 3D
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