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Scientific synergies with GDC

Global causes and consequences of solar wind-

magnetosphere-ionosphere-thermosphere 

coupling

• Local reconnection creates global consequences

• Large-scale energy transfer via EM waves 

• Field-aligned currents

Time dependence and localization

• Explosive energy release in substorms

• Auroral Acceleration

The interchange between the magnetosphere 

and thermosphere through the ionosphere

• Storm-time dynamics

• Energetic particle precipitation

• Thermospheric driving
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Co-PI: Graziella Branduardi-Raymont (MSSL)

• ESA/CAS with 2023 launch to study the global scale 

dynamic response of the magnetosphere to solar wind 

variability

• Soft X-ray Imager to image the solar wind driving

• In situ package for solar wind and IMF

• UV global auroral imager for magnetospheric dynamics

Solar wind Magnetosphere 

Ionosphere Link Explorer (SMILE)



Local process with 

global consequences: 

Direct and Indirect 

energy transfer

• THEMIS fluid scales

• Cluster ion scales

• MMS electron scales

• We need to understand energy 

transfer with global context
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Courtesy: DMSP/NOAA. Note that this data is not 

coincident with the statistical Gjerloev & Hoffman 

(2002) map

Large-scale field-aligned 

currents: the substorm 

example

• Understanding the coupling of the 

magnetosphere to the ionosphere 

remains an outstanding issue 

• And one we are only beginning to 

understand

McPherron et al., (1973)

Gjerloev & Hoffman (2002)M
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Single spacecraft FAC assumptions

• For a sufficiently large current sheet, 

Ampère’s law can be simplified to

• Perturbation field is from FAC only

• Current is sheet-like and field 

perturbation is in one component

• Spacecraft passes normally through 

current sheet

• Current does not move, rotate or 

change amplitude during crossing

−
𝜕𝐵𝑌
𝜕𝑥

= 𝜇0𝑗𝑧

Y

X

BY

Z

VSC,X

BY

jZ



Y

X

BYZ

VSC,X

BY

jZ

Lessons learned from Swarm: when are our assumptions 

violated? 
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Cross-scale coupling provides driving 

and feedback



FACs

Alternative FACs

3-7 s 

Filter

27-60 s Filter >60 s Filter3-7 s; 22.5-52.5 km
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The magnetospheric substorm: explosive 

energy release into the ionosphere
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Primary: Diagnosing substorm 

auroral acceleration

• From ground measurements, we have 

shown that substorm onset starts with 

auroral and magnetic waves

– Same time, same place,same frequency, 

same characteristics

• We know the particle characteristics of 

wave-driven auroral acceleration

• Require observations of aurora with 

simultaneous particle measurements of 

the precipitating electrons (and ions) 

that cause it
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Equatorward arc

Spatially periodic 

Brightening (“beads”)

Beads grow and bend

plasma  instability

Beads form vortex

Which breaks-up



Substorm physics from the ground and lessons

• One of the great 

successes of the THEMIS 

mission is the clear 

ground-based component 

that puts spacecraft into 

context

• But also provides new 

insight into 

magnetospheric 

processes!
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Distinguishing between drivers - Alfvén wave 

driven aurora

2 RE geocentric

3 RE
4 RE 5 RE

Energy flux in 

~keV electron beams

Energy flux in Shear Alfvén

Waves

Shear Alfvén Waves become 

dispersive as they approach 

Earth, and may transfer energy to 

electrons

GDC altitudes



Wave-driven acceleration
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6000 km

5000 km

4000 km

3000 km

2000 km

Dense ionosphere 

< 300 km 

7000 km

2 RE geocentric

Auroral density cavity: 3-6,000 km 

B

Quasi-static electric potential
structures linked to density cavity

6000 km

5000 km

7000 km

2 RE geocentric

GDC altitudes

Distinguishing between 

drivers – Quasi-static 

potential driven aurora



Distinguishing between auroral drivers

• Quasi-static potential 

drops 

– mono-energetic 

electron acceleration

• Shear Alfven Waves 

– broadband electron 

acceleration

Quasi-

static

Wave-

driven

Newell et al. [2009]



Energetic Particle Precipitation: where do 

electrons go?
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The importance of energetic particle (EPP) 

precipitation on atmospheric chemistry

• Understanding a 60 year physics problem

• Understanding the natural variation in 

global temperatures

• Understanding the role of EPP in the 

destruction of ozone

• EISCAT 3D

Particle precipitation

Production of NOx and HOx

Change in dynamics 

mesosphere & stratosphere

Destruction of mesospheric 

and upper stratospheric O3

Implications for 

Climate



In-situ EPP and HOx measurements

• NOAA POES measurements usually used to estimate particle precipitation

• ~835 km Sun synchronous orbit 

• Numerous approximations required for scientifically useful data

• Close relationship between EPP and HOx

• Input into chemistry climate models reveal surface temperature redistribution 

through EPP
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Energetic Particle Precipitation and Polar 

Surface temperatures

• Chemistry Climate models show that 

when EPP are included, surface 

temperature variations of -0.5 to +2 K, 

relative to the no precipitation case. 

• Experimentally verified during the 

winter months when NOx and HOx

are long-lived
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Secondary: Particles inside the loss cone

• All* currently flying instruments measure only a small fraction of 

precipitation, and assume symmetry

• Able to only measure strong precipitation events

• Weak precipitation thought to be crucial

Loss Cone angle at 

specific location

Typical Measurement

Examples: NOAA POES 0°
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Feedback on magnetospheric 

dynamics 
• Reconnection, energy loading and 

electromagnetic wave penetration 

and radiation belt morphology

• Don’t forget EISCAT 3D




