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• 2017 Decadal Survey released in January 2018
• Identified five Designated Observables, organized as 4 

studies
– Aerosols
– Cloud, Convection, and Precipitation
– Mass Change (MC)
– Surface Biology and Geology (SBG)
– Surface Deformation and Change (SDC)

• Mass change is determined by measuring gravitational 
changes over set time periods

• Link to the MC study is at
https://science.nasa.gov/earth-science/decadal-mc

Combined as ACCP

https://science.nasa.gov/earth-science/decadal-mc


Science value metrics directly relate the capability of an 
observing system architecture to achieving science and 
application targets relevant to MC in the Decadal Survey

The process has been presented to the community for input 
and is successful in discriminating between architectures

Decadal Survey
Science and Applications Traceability Matrix vetted by the community

Architecture Tree
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C-1a:
(300 km)2; 15 mm

Monthly

C-1b:
(300 km)2; 15 mm

Monthly

C-1d:
(300 km)2; 15 mm 

Monthly

C-1c:
(300 km)2; 40 mm

Monthly

C-7d:
(300 km)2; 15 mm; Monthly

C-7e:
(300 km)2; 15 mm Monthly

H-1a:
(1000 km)2; 10 mm

Monthly

H-2c:
(450 km)2; 25 mm

Monthly

H-3b:
(450 km)2; 25 mm; Monthly

H-4c:
(450 km)2; 25 mm; Monthly

S-1b:
(300 km)2; 25 mm

Monthly

S-3a:
(300 km)2; 25 mm

Monthly

S-4a:
(300 km)2; 25 mm

Monthly

S-5a:
(20,000 km)2; 1 mm 

Monthly
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Decadal Survey Science and Application 
Objectives for Mass Change

DS Prescribed Weights [Importance]

S-6b:
(450 km)2; 25 mm; Monthly

Climate Variability and Change Global Hydrological Cycles and Water Resources Earth Surface and Interior

A Diverse Set of Objectives Spanning Three Panels
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POD
Precise orbit determination

SST
Satellite-to-satellite tracking

Single in-line pair Single pendulum pair Two in-line pairs N-pair SmallSats MARVEL concept

GG
Gravity gradiometer
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• Numerical simulations are run that include realistic measurement system errors as well as dynamic force model 
errors to quantify the expected performance of each architectural variant

• Simulations mimic processing of real GRACE and GRACE-FO data
• Analytic partial derivatives relate the simulated observations to the state parameters of interest – this allows for a 

quantitative metric of performance.
• Numerically intensive: ~300,000 CPU hours
• Performance is analyzed across space and time

Dynamic force models used in simulations
Error is mapped 

across space and time



Highest Weight

W = Importance * Utility

H-1a:
(1000 km)2; 10 mm

Monthly

Error = 4 mm

SVH-1a = 1 * 10/4 = 2.5 

Architecture a

Hauk and Wiese, Earth and Space Science, 2020.

L

C-1d:
(300 km)2; 15 mm 

Monthly

Medium –
High Weight

SVC-1d = 0.67 * (300/225)2 = 1.2 

Assessing value against spatial resolution Assessing value against accuracyH-1aC-1d
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Meets Baseline Science Objectives

($M USD)

Concurrent Engineering 
Model is used to design and 
size each architecture. 
These designs then drive a 
validated cost model that 
has been calibrated against 
heritage missions.

This value framework allows 
for discrimination between 
architectural options on 
science value vs. cost.

We find an extremely linear 
relationship between 
science value and cost in 
this framework.
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