Integrating satellite-based soil moisture into landslide science and hazard assessment products

Matthew A. Thomas

U.S. Geological Survey Landslide Hazards Program

Erin K. Bessette-Kirton, Corina Cerovski-Darriau, Jeffrey A. Coe, Brian D. Collins, Jonathan W. Godt, Stephen Hughes, Jason W. Kean, Benjamin B. Mirus, William H. Schulz

Rapid assessment of landslide occurrence following Hurricane Maria in Puerto Rico

Bessette-Kirton et al. (2019), GSA Today: Satellite-based soil moisture data are an explanatory variable for observed landslide concentrations.

≥USGS

Ground- vs. satellite-based landslide thresholds in the San Francisco Bay Area

Thomas et al. (2019), WRR: Ground-based thresholds show superior performance because in situ soil moisture data better reflect gravity-dominated subsurface flow.

New conceptual model for landslide potential in Puerto Rico guides the development of tools geared for hazard warning

Thomas et al. (in review), HP: Variability in soil-hydraulic properties is the dominant factor that modulates the relative importance of antecedent soil moisture for our landslide-relevant thresholds.

Integrating satellite-based soil moisture into landslide science and hazard assessment products

Our science would benefit if satellite-based soil moisture were...

- resolved at timescales that are commensurate with the peak rainfall intensities associated with landslide-generating storms.
- able to capture the dynamics of seasonal and intra-storm wetting/drying for the total soil profile.
- resolved at spatial scales that can identify topographic-driven patterns in soil moisture across a given catchment.
- able to capture the effects of variability in soil-hydraulic properties on regional-scale trends in soil moisture.

