Cassini CIRS: Instrument, Operations, and Science

Scott G. Edgington (Investigation Scientist/Jet Propulsion Lab), Marcia E. Segura (Operations Team Lead/Goddard), John Spencer (Research Scientist/Southwest Research Institute)

CHARM Telecon, September 30, 2008

CIRS: The Instrument

Specializing in Temperatures and Composition

CASSINI CIRS INVESTIGATION

NASA/Goddard

F. M. Flasar G. Bjoraker J. Brasunas D. Jennings J. Pearl P. Romani M. Smith A. A. Simon-Miller

University of Maryland

V. G. Kunde C. Nixon R. Samuelson

Cornell University B. J. Conrath P. J. Gierasch

Space Science & Applications/Lanham R. Achterberg R. Carlson

NASA/Marshall M. Abbas

Oxford University

S. Calcutt P. Irwin P. Read F. Taylor

Queen Mary & Westfield College P. Ade

JPL

G. Orton L. Spilker S. Edgington (I.S.)

Lowell Observatory John Spencer

Stanford University M. Showalter

University of Hawaii T. Owen Observatoire de Paris-Meudon A. Barucci B. Bézard R. Courtin A. Coustenis D. Gautier E. Lellouch A. Marten

CEA/Service d'Astrophysique C. Ferrari

Institut d'Astrophysique Spatiale/Orsay R. Prangé

Université de Val de Marne F. Raulin

CIRS Capabilities & Science Objectives

Saturn, Titan Atmospheres

Map Global Thermal StructureDynamics, General CirculationMap Global Gas CompositionPhotochem, Dynamics, EvolutionMap Global Information on Hazes & CloudsHaze Formation, Cloud PhysicsDetermine Information on Non-equilibrium ProcessesEnergetics

Search for New Molecular Species

Photochemistry, Evolution

Titan Surface

Map/Global Surface Temperature

Lower Atmosphere Dynamics

Rings and Icy Satellites

Map Composition

Map Thermal Characteristics

Origin, Evolution, and Process

Description of Investigation

- Infrared spectroscopy of emission from atmospheres, rings, and surfaces in 10–1400 cm⁻¹ (1000–7 micron) region.
- Global mapping of atmospheres (Saturn, Titan, Jupiter)
 - Temperatures (vertical profiles and maps).
 - Gas composition (H₂, He, CH₄, NH₃, PH₃, CO₂, H₂O...), spatial distribution, and isotopic ratios
 - Aerosol and clouds opacities
- Mapping of rings and icy satellite surfaces:
 - Composition.
 - Particle sizes.
 - Thermal properties of rings and subsurface regolith (~ few cm depth)
- Nadir and Limb Observational Modes.
 - Limb Scanning Provides Scale Height Altitude Resolution.

Cassini S/C – CIRS Location

CIRS Instrument on Cassini Remote Sensing Pallet

CIRS Fields of Views

Cassini's Optical Remote Sensing Fields of View

SPACECRAFT AXES

CIRS Operability

- Programmable spectral resolution (0.5 cm-1 to 20 cm-1)
- Lower spectral resolution, shorter integration times for extensive mapping of atmospheric temperatures & aerosols, thermal properties of rings & surfaces
- Higher spectral resolution, longer integration times for limited mapping of minor gaseous and surface constituents
- Different spatial resolution in far-infrared (4 mrad) and midinfrared (0.3 mrad)
 - Far-infrared observations must generally be executed closer to target to achieve comparable resolution to mid-IR observations.
- Limb and nadir viewing
 - Limb viewing must be done closer to target than nadir observations, to achieve scale-height vertical resolution

Instrument Description

Telescope Diameter(cm):	50.8				
Interferometers:	FAR-IR		MID-IR	the shares	
Туре:	Polarizing		Michelson		
Spectral range(cm ⁻¹):	10 - 600		600 -1400		
Spectral range(microns):	17 - 1000		7 - 17		
Spectral resolution(cm ⁻¹):	0.5 to 20		0.5 to 20		
Integration time(sec):	2 to 50		2 to 50		
The second second		Vertine.		Station of	
FOCAL PLANES:	<u>FP1</u>		FP3	FP4	
Spectral range(cm ⁻¹)	10 - 600		600 - 1100	1100 - 1400	
Detectors	Thermopile		PC HgCdTe	PV HgCdTe	
Pixels	2		1 x 10	1 X 10	
Pixel FOV(mrad)	3.9	The state of the	0.273	0.273	
Peak D*(cm hz ^{1/2} W ⁻¹)	4 x 10 ⁹		2 x 10 ¹⁰	5 x 10 ¹¹	
Data Talamatry Bata(kha)		2.4		CALLARS.	
Data Telemetry Rate(KDS)		2,4			
Instrument Temperature(K)	170				
Focal Planes 3 & 4 Tempera	ture(K)	75 - 90			

CIRS Advantages Over Voyager IRIS

- Extended far-infrared coverage: 10 180 cm⁻¹ not accessible to IRIS. (Better performance than ISO, too.)
- Higher spectral resolution (up to 0.5 cm⁻¹) than IRIS (4.3 cm⁻¹).
- Improved sensitivity in mid-IR (HgCdTe vs. thermopiles).
- Higher spatial resolution (also big advantage over ISO).
- Limb-viewing capability: better vertical resolution from geometry and deep space as background.
- Orbiting platform: permits detailed global mapping

Cassini ORS instruments: Spectral coverage

Blackbody Radiation

CIRS measures photons at frequencies were bodies give off thermal blackbody radiation

• The intensity of these photons are modulated by the composition and scattering properties of the bodies in question

• From Flasar, et al. 2004

CIRS Examples From Jupiter

CIRS Examples From Jupiter (cont.)

CIRS Examples From Jupiter (cont.)

CIRS Operations

Marcia Segura CIRS Operations Team Lead CHARM – Sept 30, 2008

Operations – What is it?

Making Cassini program science objectives a reality! It's a challenge!

Operations – HOW?

Not only is it a challenge It's a BIG job! So ... We break it down into manageable chunks.

> Uplink Execution Downlink

Uplink

- Integration or science planning

 the tour (time) is divided first
 by discipline and then by team.
 - A lot of friendly competition/ bickering occurs at this step!
- Implementation the time allocated in integration is turned into actual observations

 spacecraft and instrument commands.
 - Rubber hits the road here all flaws in the planning are quickly revealed and fixed!

Execution

- While the sequence is executing on board Cassini; the team:
 - Monitors the health and safety of CIRS
 - Monitors the data collection
 - Responds to instrument or spacecraft anomalies
 - Late night, holiday, weekend calls spacecraft and CIRS have not regard for human schedules!
 - Does any real-time commanding needed

Downlink

- Last step in Operations tasks include:
 - Collecting the data from JPL
 - Processing the data.
 - Calibration of the data
 - Data validation
 - Delivering data to science team
 - Archiving the dataset to Planetary Data System

Operating CIRS

CIRS is a marvelous instrument and has taken a great dataset but it has it's own unique "personality" which makes the operation both rewarding and challenging.

The Challenges

• Thermal Stability

– It is a thermometer and takes its own temperature!

• Jitter

 It is the spacecraft seismometer detecting high wheel motion.

Spikes

- It senses electrical interference:

CIRS Activities for PRIME mission

CIRS Activities for Prime Mission

Target	2004	2005	2006	2007	2008	Totals - Target
CALS	102	209	289	360	356	1316
Engineering	24	3	5	14	4	50
lcys	87	242	78	123	116	646
Rings	43	151	143	187	196	720
Saturn	96	53	86	88	29	352
Stars	0	0	5	17	25	47
Titan	36	61	122	222	84	525
Totals - year	388	719	728	1011	810	3656

CIRS Gee Whiz facts for the Prime Mission

- During the last 4 years CIRS (the instrument and/or team) has:
 - Been commanded over 8000 times
 - Had 4 new versions of flight software
 - Planned and designed over 3600 observations
 - Collected, processed, and calibrated
 52,718,732 spectra (as of 24 Sept 2008)
 - Published over 50 papers

A Day in the Life an OTL

- NO 2 days are alike!!! •
- Very fluid and dynamic situation. ightarrow
- 24 hours per day, 7 days per week, 365 days per year.
- Some days I put out fires and some days I create them! •
- E-mail, telecons, crisis management, fielding questions, providing \bullet guidance, Icy satellite designs, sequence implementation, solving problems, team meeting organization, preparing presentations, anomaly response, management -
- It's a juggling act and can be very stressful!

task/team herding cats, etc

CIRS: The Science

Jupiter's Atmosphere

Temperature Retrievals

Derivation of Stratospheric Winds

Thermal Wind Equation $\left(\frac{\partial u}{\partial \ln P}\right)_{y} = \frac{R}{f} \left(\frac{\partial T}{\partial y}\right)_{p}$ $f = 2\Omega \sin(latitude)$

Temperature In Two Epochs

Temperature Variation with Altitude

Miller at al 0000

1 mbar

Hydrocarbon Photochemistry

CIRS at Jupiter: Dec. 2000 - Jan. 2001

CIRS at Jupiter: Dec. 2000 - Jan. 2001

Composition Detected To-Date by CIRS

MORE TRANSPORT	Gas	Spectral Region (cm ⁻¹)	Comments
Main Constituents	(new)		MARINE MARINE
Hydrogen	H ₂	Pressure Induced: 50 - 600	一部に第一の内に
		Dimer: 384; Quadrupole: 587	
Methane	CH ₄	Rotational: 73.0, 83.3, 94.3	
TEST STATES		v ₄ : 1250 - 1350	Auroral Enhanced
Tropospheric Constituents	122.20		
Ammonia	NH ₃	Rotational: 100 - 250	A PARTIE
		v ₂ : 900 - 1100	
Phosphine	PH ₃	Rotational: 20 - 100	
Stratospheric Constituents	Ser a	and the second	Piter and and
Hydrocarbons	10	- A CARLES AND A CAR	A MARTINE TOP
Acetylene	C_2H_2	700 - 760	Auroral Enhanced
Ethane	C_2H_6	800 - 840	Auroral Enhanced
Methyl Radical	CH ₃	606	Auroral Enhanced
Ethylene	C_2H_4	949	Auroral Enhanced
Methylacetylene	C_3H_4	630 - 635	Auroral Enhanced
Benzene	C ₆ H ₆	673.5	Auroral Enhanced
Diacetylene	C ₄ H ₂	628	
Nitrilres			
Hydrogen cyanide	HCN	712	an and share with
Oxygen Compounds	And Address		
Carbon dioxide	CO ₂	667.4	Excess at High
			Southern Latitudes
Isotopes			
Deuterated Hydrogen	HD	Rotational: 88.2, 178.1, 265.3	
Monodeuterated methane	CH ₃ D	1156	
Isotopic ethane	¹³ C ₂ H ₆	822	The second second
Isotopic ammonia	^{1°} NH ₃	863, 883, 903, 943	A STATE OF THE STA

CIRS: The Science

Saturn's Atmosphere

Saturn Observations by Range

- Five basic types of observations conducted by CIRS depending on range and goal
- Thermal Characterization: Mosaics across the disc. Requires low spectral resolution.
- Composition: Long long sit and stares. Requires high spectral resolution.

CIRS Limb Observations

Fig. 6 *Right*: Schematic of limb and nadir viewing. *Bottom*: Limb sounding on Titan. The arrays are placed in two successive positions to map the tropopause region and higher altitudes.

Saturn Temperature-Inversion Kernels

Saturn's Temperatures and Winds

Saturn's 15 Year Thermal Oscillation

- CIRS has observed the spatial variation of temperature in Saturn's atmosphere during Cassini's Prime Mission. CIRS
 observations in the Cassini epoch have been compared to the temporal coverage provided by ground-based
 observations.
- Together, they indicate an semi-annual (with a period of ~15 years) oscillation in the stratosphere. The temperature at Saturn's equator switches from hot to cold, and temperatures on either side of the equator switch from cold to hot every Saturn half-year.
- This phenomenon is similar to the quasi-biennial oscillation on Earth and quasi-quadriennial oscillation on Jupiter.
- Fouchet, et al. 2008.

South Polar Storm Temperatures

180

-135

-90

160

155

150

145

0

-45

240°

270°

0.00 hours

North Polar Hexagon Temperatures

Tropopause (100 mbar)

• VIMS measures infrared photons at $5 \mu m$, which originate from the deep troposphere. Storm systems which provide enough opacity will block these photons creating the dark features observed. • View of the North Polar Hexagon at 3 levels in Saturn's atmosphere.

т

84

82

80

78

76

74

72

 CIRS measures thermal black body radiation originating from the upper troposphere and stratosphere

Troposphere (> 2 bar)

Stratosphere (1 mbar)

Saturn's Spectra

• Like Jupiter, Saturn's far-infrared spectra is complicated with the presence of many different molecules, e.g. Fletcher, et al. (2008) and Howett, et al. (2007)

Saturn's Composition

• This schematic from Fletcher, et al. 2007 illustrates how several types of data sets and modeling procedures are needed to extract the atmospheric composition.

Saturn Composition-Inversion Kernels

Saturn's Latitudinal Variations

•CIRS is revealing that the distribution of minor molecules vary strongly with both latitude and altitude.

How will this change with season? Stay tuned!

CIRS: The Science

The Icy Satellites

CIRS and Saturns's Mid-Sized Satellites

- Extensive data on all the medium-sized satellites
- Concentrate here on three of them:
 Phoebe
 Iapetus
 - Enceladus

Black-body Radiation

- Any object warmer than absolute zero emits heat radiation
- The hotter the surface, the shorter the wavelength of the radiated light
 - Brightness and wavelength of the radiation gives the temperature
- Objects as cold as those in the Saturn system emit their radiation at long infrared wavelengths

Hot lava emits red and yellow light Cooler lava emits red light

Even cooler lava emits only infrared light

Phoebe: June 2004

Sunrise on the big crater Jason

Phoebe Departure

FP3DAYMAP001

0:55h after close approach Range: 21,500 km

Early afternoon is the warmest time of day, ~112 K

Warmer than most Saturn satellites because Phoebe is dark and absorbs most of the available sunlight

Phoebe Diurnal Temperature Curve

- Allows determination of thermal inertia: how well the surface retains heat at night.
 - Solid rock and ice store heat efficiently, change temperature slowly (think of warm stone walls at the end of a summer day)
 - Fluffy, dusty, surfaces change temperature quickly when the heat source (sunlight here) goes away.
- Large diurnal variations in temperature on Phoebe mean that its surface is very dusty or fluffy: thermal inertia is 100x lower than for solid rock or ice.
- Pulverized by billions of years of impacts

Iapetus New Year 2005 Flyby: Daytime Temperatures

- Best resolution ~35 km
- Peak dark side noon temperatures ~130 K (-225 F)
- Poor sampling of nighttime temperatures
- No sampling of daytime bright-hemisphere temperatures

Sept. 2007 Nighttime Map

- Dark side at night
- Wavelength 20 200 microns
- 50-55 K (-369 -360 F) nighttime temperatures
 - Rapid nightside cooling implies a very fluffy surface, similar to other Saturn moons
- Warm region near 0 N, 20 W
 - Less fluffy?

Hi-Res Noontime Scan

- Resolution = 8 km
- Dark regions are warm, bright regions are cold
- Peak temperature = 128 K (-229 F)
- Minimum equatorial temperature = 113 K (-256 F)

CIRS

ISS Albedo

Hi-Res Daytime Scan

 8 km resolution is sufficient to sample ~pure bright and dark material

H₂O Ice Sublimation Rates

- Temperature allows calculation of how fast ice should sublime (evaporate) from Iapetus' surface
 - Bright terrain: ~10 cm per billion years Impacts will remix material on similar timescales
 - Dark terrain: ~20 m per billion years fast!
 - Dark ice is unstable and will evaporate
- Consistent with
 - Presence of thermal segregation
 - Bright pole-facing slopes
 - The shape of the bright/dark boundary

Global Ice Movement

- Simple models of dark material infall darken the leading hemisphere, but Iapetus is not so simple
 - Iapetus' bright material extends over the poles-
 - Dark material extends around the equator
- Thermal ice migration can explain this..
 - Originally proposed by Mendis and Axford in 1974

Frost Migration Model

- Assume Iapetus is covered in ice
- Infalling material darkens the leading side
- Dark, warm, ice evaporates and recondenses elsewhere
- Evaporation shuts off when 1mm of ice has been lost
 - Ice layer is exhausted
 - Or lag deposit forms

Enceladus: The Big Surprise

South polar hot spot!

• Simple passive model cannot produce a warm pole

Location of Warm Region

- Centered on the south pole
- Corresponds closely to the "tiger stripe" fractures (rather than the larger south polar terrain)

Brightness Temperature Contours (Spencer et al. 2006)

Spectrum of South Polar Warm Region

Average spectrum south of 65 S

- Not consistent with a blackbody
- Best fit after subtracting expected background:
 - 345 km^2 (~1% of the surface) at 133 K
 - 6 GW of radiated power!
- Average ~660 m w tiger stripes

Repeat View in November 2006

Distribution of temperatures unchanged since July 2005 Brightness the same to within ~10%

July 2005

November 2006

March 2008: A Closer Look

 Temperatures of at least 180 K

CIRS: The Science

The Rings

Types of Ring Observations

Four basic types of observations conducted by CIRS depending on geometry and goal
Thermal Characterization: Scans at a variety of phase angles, local hour angles, and inclinations. Requires low spectral resolution

• Composition: Long sit and stares. Requires high spectral resolution

CIRS Radial Ring Scans

- Temperature variations with phase angle are present in A, B, C rings and Cassini Division
 - Ring temperatures decrease with increasing phase angle
- These variations are indicative of a population of slowly rotating ring particles

Ring Temperature vs. Phase Angle

- Temperatures decrease with increasing phase angle and ring optical depth
- The Lit A and B rings warmer than the unlit A and B rings due to the ring thickness
- Both Lit and unlit C and CD exhibit similar temperatures implying that the thickness approach a single layer structure

Azimuthal Variations In The A-Ring

Ring Sub-Millimeter Roll-off

- Brightness temperatures decrease with increasing wavelength (decreasing wavenumber)
- Each Ring system (A-, B-, and C-) exhibit a different roll-off
- Emissivity can give clues about the structure of ring particles, regolith properties, and composition.

Fig. 8 Brightness temperatures of Saturn's B ring (Esposito *et al.*, 1984). B' is the ring tilt angle relative to the sun. Between wavelengths 50 μ m and 1 mm (200 cm⁻¹ and 10 cm⁻¹), the absorption coefficient for water ice at 100 K decreases by a factor ~10⁴, making the material progressively more transparent. This gives CIRS the ability to probe icy material to various depths, providing a powerful tool for the investigation of the composition and physical properties of this material. The reality of the unidentified emission feature near 400 μ m, which interrupts the expected smooth decrease attributable to water ice, has recently been called into question.

From Spilker et al, 2005

CIRS: The Science

Titan

Titan Observations by Range

- Nine basic types of observations conducted by CIRS depending on range and goal
- Thermal Characterization: Mosaics across the disc. Requires low spectral resolution.
- Composition: Long long sit and stares. Requires high spectral resolution.

Titan's Temperatures and Winds

- Zonal mean temperatures from all limb and nadir maps. Retrieved temperatures were averaged in 5° latitude bins. Contours are labeled in K
- 5° latitude bins. Contours are labeled in K.
- Zonal winds calculated from the mean temperatures with the gradient wind equation. Wind speed contours (black lines) are labeled in m/s.
- From Achterberg, et al. 2008

CONTE INFRARED SPECTROLE CASSINI CIRS CASSINI CIRS CASSINI CIRS CONTE INFRARED SPECTROLE CASSINI CIRS CONTE INFRARED SPECTROLE CONTE INFORMATION OF CONTE INFORMATION CONTE INFRARED SPECTROLE CONTE INFORMATION OF CONTE INFORMATION OF CONTE INFORMATION OF CONTE CONTE INFORMATION OF CONTE INFORMATION OF CONTE INFORMATION OF CONTE CONTE INFORMATION OF CONTE INFORMATIO

CIRS Titan Spectrum

•Temperatures from CH₄ v₄ band

•Abundances from emission bands of ¹³CH₄, C₂H₂, ¹³C¹²CH₂, C₂H₆, ¹³C¹²CH₆

allows calculation of ¹²C/¹³C ratios

Spatial variations

 CIRS can trace the global stratospheric circulation by observing species of different chemical lifetimes.

Isotopes

 CIRS has the ability to measure D/H, ¹²C/¹³C, ¹⁴N/¹⁵N and ¹⁶O/¹⁸O, which can provide constraints on formation and evolution (atmospheric chemistry scenarios).

Titan's Latitudinal Variations

• The enhancement at the North pole is currently a factor of 1.5-2 smaller than at the time of the Voyager encounter for all molecules

New Detection of C2HD

Coustenis et al., 2008

Isotopes of CO₂

- CO₂ has been mapped via v₂ band @ 667 cm⁻¹.
- Stratospheric abundance ~ 10⁻⁸.
- Recently we have detected the isotopic emission of ¹³CO₂ @ 648.5 cm⁻¹ (6-σ detection).
- ... and *probably* the $C^{18}O^{16}O$ emission at 662.5 cm^{-1} (3- σ detection, σ = NESR only).

Nixon et al., 2008

Retrieved isotopic ratios are ${}^{12}C/{}^{13}C \sim 84 \pm 17$, in line with Huygens GCMS (82.3 ± 1), and ${}^{16}O/{}^{18}O \sim 346 \pm 110$, perhaps 1.5x enriched

¹³C in HC₃N: H-C=C-C=N

- Cyanoacetylene formed by substitution of -CN (from HCN) into C_2H_2 and C_2H_4 .
- HC₃N has a strong v₅ band @ 663.4 cm⁻¹ due to bending of CH.
- Replace ${}^{12}C \rightarrow {}^{13}C$ changes frequency: $H^{13}CCCN = 658.7 \text{ cm}^{-1}$ $HC^{13}CCN = 663.1 \text{ cm}^{-1}$ $HCC^{13}CN = 663.1 \text{ cm}^{-1}$

(Jolly et al. JMS, 242, 46-54, 2007)

Jennings et al., 2008

Modeling implies $^{12}C/^{13}C$ ~ 78 \pm 12, in line with Huygens GCMS (82.3 \pm 1). Potential to discriminate between C from HCN and C₂H₂.

CIRS: What's Next?

NASA's Cassini spacecraft fails to achieve orbit around Saturn due to an unexpected discovery on the far side of the planet.

Acknowledgements

We would like to thank the following persons for their contributions to this presentation:

F.M. Flasar (PI) N. Altobelli A. Coustenis L. Fletcher C. Leyrat The rest of the CIRS Team for their hard work

Visit the Cassini-Huygens Mission to Saturn Webpage http://saturn.jpl.nasa.gov