

"That's Why We Carry Backup Hardware!"

Thruster B-Branch Swap

Julie L. Webster Cassini Spacecraft Operations Manager

Engineers must plan for "what if.."

- Cassini has redundant hardware in all engineering subsystems
 - Redundant hardware is very expensive
 - Hardware cost
 - Fault protection logic software associated with redundancy (main cost driver)
 - But the alternative is unthinkable on a Flagship mission!
- Two ways to switch to redundant hardware
 - 1) Fault Protection does it for you ("fast" failure)
 - 2) Switch after observing degradation and impending failure
 - The second method is ALWAYS preferred!
- Cassini used single Reaction Wheel Assembly (RWA) redundancy in 2003
 - Replaced RWA-3 with articulatable RWA-4
 - Created software program to predict and prevent problems with remaining RWAs
- Now Cassini has switched to the redundant thruster set in 2009

Mono-Propellant Design

- Cassini has 4 Z-facing thrusters and 4 Y-facing thrusters with redundant set
 - Used for small (<0.3 m/sec) maneuvers, Reaction Wheel momentum changes (biases), "fast" turns for Science
 - Thrusters are Aerojet heritage (1 Newton, 0.2 lbf)
 - Same (similar) to Voyager, Magellan, MRO, Stardust, New Horizons
 - Only Voyager and Cassini A-branch Z-facing thrusters have Chamber Pressure transducers (to measure Pc roughness)

A picture is worth a thousand words!

Fig. 2. 0.2-lbf Thruster Thrust Chamber Assembly [Rocket Research Corp.]

Ref: Van Camp, V. V., "Characterization Testing of a 0.20 lbf Hydrazine Thruster," AIAA 79-1306, 1979

What happened?

- On Orbit Trim Maneuver 169 (10/29/08), RCS Thruster Z3A performance degraded dramatically
 - Significant underburn
 - Extreme Pc roughness on thruster Z3A
 - Increasing Pc roughness on thruster Z4A
 - Significant future delta-V penalty incurred
- Subsequent OTMs (175, 178) and momentum biases showed continued degradation
- Voyager experienced similar, but smaller variations in Chamber pressure roughness
 - Did not see significantly lowered thrust
- Cassini also saw increased Pc roughness in early cruise
 - Mono-prop recharge on 4/10/06 cleared up early Pc roughness

PC ROUGHNESS (%)

RCS CHAMBER PRESSURE ROUGHNESS DURING OTM

(standard deviation / mean)

◆ PZ1A ■ PZ2A ▲ PZ3A ● PZ4A

7

JLW - 04/28/09

PC (psia)

OTM-156 PZ3A CHAMBER PRESSURE, OFF PULSES FILTERED OUT

AVERAGE
+/-1 SIGMA
BOL SPEC

TIME SINCE BURN START (sec)

PC (psia)

OTM-160

PZ3A CHAMBER PRESSURE, OFF PULSES FILTERED OUT

AVERAGE
+/-1 SIGMA
BOL SPEC

JPL

TIME SINCE BURN START (sec)

PC (psia)

OTM-169

PZ3A CHAMBER PRESSURE, OFF PULSES FILTERED OUT

INSTRUMENTATION PEGGED

AVERAGE
+/-1 SIGMA
BOL SPEC

TIME SINCE BURN START (sec)

Meetings

- Technical Interchange Meeting with thruster manufacturer, propulsion teams on 01/22/09
 - Conclusion reached that Thruster Z3A is exhibiting end-of-life properties
 - Recommendation made to switch to B-Branch thrusters
- Meeting with JPL management 01/26/09
 - Okay to continue plans for thruster swap
- Cassini internal weekly meetings to develop plan and procedures

High Level Plan

- Identify timeframe for Thruster B Branch swap and Checkout
 - To be completed in a "timely" fashion, avoiding any chances of missing an OTM and falling off tour design
 - Each targeted encounter has 3 OTMs to pinpoint time and altitude
- Use Thruster B Checkout plan, procedure developed in 2003 (pre-SOI)
 - Update and re-test for current spacecraft status, background sequence
 - Run Fault Protection regression tests in Attitude Control Flight Software Simulator, test beds
 - Dry-run all commands through Integrated Test Laboratory

Why does it take so long from decision to thruster swap?

- In spacecraft business, take the time available to do it right
 - First, do no harm
 - Test to make sure all commands are recoverable
 - Find the right place and time for all parties
 - Testers preferred six months
 - Propulsion preferred six days
 - Science preferred "quiet time" without Priority Science
 - Spacecraft team and Navigation preferred maximum time between OTMs
 - Best time for Spacecraft Team, Navigation, and Science was 3/12-18/09
 - Six weeks from decision to spacecraft

Conclusion

• Swap to Thruster B set was entirely NOMINAL!

