## Saturn at

## Equinox

## Mark R. Showalter SETI Institute

ma un compzet $2: 3$. Ce quali quat $f$ trea: $n$, ne mai tro chicoro $s$ muouono, i'mutan!; et sow trote in fía seevdo ar Eaghevir Del todive, erendo quell Di nezzo aren 3 noble maggion' sulle alive. 2 . aterali, et stans hikuate in questa forma, OOO. sicme geanto prima fasóvevere vi cro A: esendo in questo oution. If haver selling comoditi 2 - Ferane le cose celent is i pimmen tutci. opra iomizzonte. I/S ocuperé prin Viffting er racinnoli a oymi ren? Qmam un nitilia, Disichinars humil:
 2. Pown AFo. Qi ungio 1610
Q.V.Sfter
er: Notyn.

Gahleo Yavier
v, xe mai to a loro s' muouono, muta von trothe en fila seesdo a Cughevia del eserdo quell Qo nezso airea 9 . velte $m$ Lelle atire. 2 . Caterale, et stans sikat questa forma, 000 s ame greanto faro'vecere a ioso $A^{2 e}$ epsendo un presto
 clett osi'pramen tucti opra iomizzo Woceupere prin Vifftend et oracianols

Galileo, Il Saggiatore, 1623 (The Assayer)


ea quam dixi annuli inclinatione, omnes mirabiles Saturni facies ficut mox demonftrabitur, eo referri poffe inveni. Et hæc ea ipfa hypothefis eft quam annor $6 ; 6$ die 25 Martij permixtis literis una cum obfervatione Saturniæ Lunæ edidimus.

Erant enim Literæ aaaaaaacceccdeceeegh iiiiiiillllmmnnnnnnnnoooooppqresttt uuuuu; quæ fuis locis repofita hoc fignificant, Annulo cingitur, tenui, plano, nufquam cobarente, ad eclipticam inclinato. Latitudinem vero fpatij inter annulum globumque Saturni interjecti, xquare ipfus annuli latitudinem vel excedere etiam, figura Saturni ab aliis obfervata, certiufque deinde quæ mihi ipfi confpecta fuit, edocuit : maximamque item annuli diametrum eam circiter rationem habere ad diametrum Saturni quæeft 9 ad 4 . Ut vera proinde forma fit ejufmodi qualcm appofito fchemate adumbravimus.


Cæterum obiter hic iis refpondendum cenfeo, quibus novum nimis ac fortaffe abfonum videbitur, quod non tan- turiis quse tum alicui celeftium corporum figuram ciufmoditribunm, de amulo uif cilicallor abjici $p \rho$ F: cui fimilis in nullo hatenus corum deprehenfa eft, cum fent. contra procerto creditum fuerit, ac veluti naturali ratione conflitutum, folam iisfphæricam convenire, fed \& quod

Erant enim Literx aaaaaacccccdececegh iiiiiiillllmmnnnnnnnnnooooppqrestttt tuuuu; quæ fuis locis repofitx hoc fignificant, Annulo cingitur, tenui, plano, nufquam coberente, ad eclipticam inclinato. Latitudinem vero fpatij inter annulum globum-

The ring encircles, is thin, planar, nowhere connected, and inclined to the ecliptic.

- Christiaan Huygens, 1659
$0 \cdot 0 \rightarrow 0-0$ $\because(0)(0)$



SYstema Saturnium.


Cujus phafeos vera proinde forma, fecundumea quæ fupra circa annulum definivimus, ejufmodi erit qualis hîe delineata cernitur. mainriellinfic diamatro ad minarem fe

## Ring Thickness


http://photojournal.jpl.nasa.gov/catalog/PIA08356

## Ring Thickness

## 5-10 meters



Cassini ISS, PIA08356


## Q. Why do equinoxes matter?

A. We get to see phenomena normally lost in the glare of the main rings.

- Small satellites
- Faint rings
A. We get to examine the vertical structure of the rings.
- Thickness
- Warps \& bending waves
A. Satellite shadows, occultations, mutual events.


## 1966: Saturn's E Ring

## LETTERS TO THE EDITOR

## ASTRONOMY

## Concerning the "D" Ring of Saturn

In his excellent chronological review book of observations, The Planet Saturn, Alexander ${ }^{1}$ compares the outer, " $D$ " ring of Saturn to the Loch Ness Monster: some see it, and some do not. During the second half of the nineteenth century a number of visual observations were reported by experienced observers but the issue seems to have been settled by Barnard ${ }^{2}$ in 1909, using the 40 in. Yerkes refractor visually and getting negative results. Apparently few, if any, attempts have been made photographically to detect a ring outside the well known $A, B$ and $C$ rings.

The recent edge-on configuration of the ring system was an appropriate time to investigate the problem of the hypothetical " $D$ " ring photographically. It is known that when seen nearly edge-on, the $A$ ring, normally fainter than the $B$ ring, can sometimes appear brighter than $B$. Similarly, an outer " $D$ " ring might appear relatively bright at the time, while when in the open position it may be completely unobservable.

Although there are theoretical arguments against the existence of an outer " $D$ " ring, for example, the sweeping effect of the inner moons (compare (Alfven ${ }^{3}$ ). there is at

$a$


Fig. 2, $a$, Microdensitometer trace along path $X-X$ of Fig. 2b. Expo time, 5 min , December 12, 1966. Other data as in Fig. 1a. b, Asper

## 1966: Janus

## Circular No. 1987

## Central Bureau for Astronomical Telegrams INTERNATIONAL ASTRONOMICAL UNION <br> Postal Address: Central Bureau for Astronomical Telegrams <br> Smithsonian Astrophysical Observatory, Cambridge, MA 02138, U.S.A. Cable Address: SATELLITES, NEWYORK Western Union: RAPID SATELLITE CAMBMASS

## PROBABLE NEW SATELLITE OF SATURN

Dr. Audouin Dollfus, Meudon Observatory, reports the discovery of a probable new satellite of Saturn. The satellite, of magnitude 14 , is very close to the edge of the ring and moves in an orbit of estimated diameter 315000 km . The provisional revolution period is 18 hours. The object was observed on three plate: at eastern elongation on December 15 and at western elongatin on December 16 and 17. Dr. Dollfus states that further observations are needed.

## COMET RUDNICKI (1966e)

Dr. Axel V. Nielsen, Ole Romer Observatory, points out that at its descending node Comet Rudnicki passes very near the orbit of the earth. Its heliocentric distance would then be 1.02 AU . He suggests the possibility of observing meteors associated with the comet on about 1967 June 7.

Further precise positions have been reported as follows:


## 1979:

## Epimetheus,

## ICARUS 47, 288-290 (1981)

## NOTES

## Observations of the Saturn E Ring and a New Satellite

S. M. LARSON, J. W. FOUNTAIN, B. A. SMITH, AND H. J. REITSEMA Lunar and Planetary Laboratory, University of Arizona, Tucson. Arizona 85721

Received May 22. 1981: revised June 29, 1981

## Telesto, <br> Calypso

## 1979: The E Ring is Blue!

## (cff. HST, 1995)



## 1979: E Ring's Connection

## to Enceladus



## 1995: Warps in the Ring Plane



Credit: NASA/STScI/P. D. Nicholson, Cornell

## 1995: Vertical thickness of the F Ring



## 1995:

- Chaotic interaction between Prometheus and Pandora.
- Dispersion of the F Ring's clumps.


## Earth-based Discoveries

- 1966

- E Ring
- Janus
- 1979-1980
$16 y$
- Epimetheus, Helene, Telesto, Calypso
- E Ring color \& association with Enceladus
- 1995
- Prometheus/Pandora chaotic interactions
- Vertical warps in the ring plane
- F Ring thickness
- 2009


# Uranian Equinox, December 2007 



Credit: I. de Pater, U. C. Berkeley/W. M. Keck Telescope





# 2009: Slim pickins' for Earth-based Observers 



# Solar \& <br> Heliospheric <br> Observatory (SOHO) 

## September 18, 2009



## Cassini's First Spoke <br> September 5, 2005 <br> Cassini ISS, PIA0773I

 PIAI056|


Spokes, February 2009
PIAI 1470

## Spoke Lighting Geometry

"Summertime" sunlight:
Sunlight

- The B Ring is well lit.
- Sunlight follows a short, direct path



## Spoke Lighting Geometry

"Springtime" sunlight:

- Grazing sunlight makes the B Ring darker.
- A longer path through the tenuous cloud makes the spoke more visible.



## Impacts into the Rings (?) August II \& I3, 2009 PIAII 674

"Groundhog Day" Shadow of Epimetheus

## January 8, 2009 PIA $\times 1650$

Shadorr of Epimetheus Redux July II, 2009 PIAl| 584

## Shadow of Tethys May 20, 2009 PIAl| 525

## B Ring edge April 9, 2009

Two Images of the B Ring Edge


Two Images of the B Ring Edge


Two Images of the B Ring Edge

"Before"


## "After"



Hypothesis: Densely packed ring material, when squeezed together, has nowhere to go but "up".

## B Ring edge April 9, 2009

# Someday, we'll see this in the Uranian $\varepsilon$ ring! 



# Daphnis and its "Wake" June 8, 2009 PIAl| 654 

# Daphnis and its "Wake" <br> July 13, 2009 <br> PIAII 677 

## Daphnis and its "Wake" July 13, 2009 <br> PIAII 677

Sharpened and enhanced
"Something" in the F Ring
June II, 2009
PIAl| 662

## F Ring "moonlets"

April-August, 2005

## Shadows of Encke Gap Ringlets August 19, 2009 PIALI676



A "Propeller" Moonlet, ~ 400 m
August 13, 2009

Ripples in the C Ring
August 10, 2009 PIAII 671

## Saturn's Shadow

# From Hedman et al. 2007. <br> Icarus 188, 89-107 



Ripples in the D \& C Rings "Cut-away" view of the rings


# Ripples in the D \& C Rings "Cut-away" view of the rings 



- "Something" tilts the ring plane slightly in spring 1984.


# Ripples in the D \& C Rings 

 "Cut-away" view of the rings

- "Something" tilts the ring plane slightly in spring 1984. - Oblateness causes inclined orbits to "wobble."


# Ripples in the D \& C Rings 

 "Cut-away" view of the rings

- "Something" tilts the ring plane slightly in spring 1984.
- Oblateness causes inclined orbits to "wobble."
- Inner orbits wobble faster than outer ones.

Ripples in the D \& C Rings "Cut-away" view of the rings

## $\begin{array}{ccc}\downarrow 00000000000000000000 \\ 000000000000000000 \\ \uparrow & \uparrow_{1}^{\downarrow} & \downarrow \\ 6 \mathrm{~m} & 4 \mathrm{~m}\end{array}$ 0.00000000000000 cereecebebeceecbebo

0 months
April 1984

# Ripples in the D \& C Rings 

 "Cut-away" view of the rings

3 months

July 1984

# Ripples in the D \& C Rings 

 "Cut-away" view of the rings

6 months

October 1984

# Ripples in the D \& C Rings 

 "Cut-away" view of the rings

9 months

January 1985

# Ripples in the D \& C Rings 

 "Cut-away" view of the rings
##  <br> 12 months <br> April 1985

# Ripples in the D \& C Rings "Cut-away" view of the rings 

##  <br> 48 months <br> April 1986

# Ripples in the D \& C Rings "Cut-away" view of the rings 

## Muncurume



281 months

## September 2009



## The Problem...

- We still know that "something" happened in spring 1984.
- The pattern still unwinds to a particular moment.
- That "something" affected $17,000 \mathrm{~km}$ of the ring, not just a small region of the low-mass $D$ ring.
- It was a much larger event than we had imagined.


## Saturn at Equinox August I2, 2009 PIAII 667

## Saturn at Equinox August I2, 2009 PIA I 1667

Rings illuminated
primarily by
Saturn-shine


Only the F Ring is still glowing (...as was noted in HST data from l995)

http://saturn.jpl.nasa.gov/video/videodetails/?videolD $=195$ Suggestion:Advance to I:I4 in the movie

1995 Equinox: HST/WFPC2


2009 Equinox: Cassini ISS

THE UNIVERSE YOURS TO DISCOVER


INTERNATIONAL YEAR OF ASTRONOMY 2 009

- 400 years of telescopic astronomy.
- 399 years from Galileo's first look at Saturn.
- 350 years since the publication of Huygens' Systema Saturnium.
- Heyday of the Cassini Mission.
- Saturn's equinox.



$$
3
$$

