Dissolving Titan: Dissolution geology on Saturn's moon

Michael J. Malaska, PhD / NPP Senior Fellow ORAU / Jet Propulsion Laboratory / California Institute of Technology

Funding from ORAU NPP Program / ASTID / OPR gratefully acknowledged

Dissolution geology on Earth Cycling fluids + soluble materials → dissolution

Tsingy de Bamaraha, Madagascar (UNESCO World Heritage site)

Lighthouse Reef Atoll Blue Hole, Belize.

Dissolution on Earth: White Sands National Monument, NM

Image credit Mike Malaska October, 2011

White Sands National Monument: Dissolution of gypsum (CaSO₄•2H₂O) in H₂O

gypsum dunes

Dissolution and evaporation of gypsum

Karren features in gypsum rock Bottomless Lake State Park, NM

Conduit in a gypsum cave Carlsbad Caverns National Monument, NM

Unnamed playa in White Sands National Monument, NM

Dissolution as a molecular process

Solid Diffusion boundary layer Bulk solution

Solvent penetration Dissolution Weakening Removal of insoluble materials

Fissure→Conduit

Deeper penetration and widening increases overall throughput

6) Turbulent flow Increased dissolution

4) Fissures widens

5) Breakthrough! Flow increases Laminar flow regime

Fissure widening and collapse

Dissolution \rightarrow weakening \rightarrow erosion

Fissures

Widening

Collapse

Sinkhole

Figure from: Piccini, L., 1995. International Journal of Speleology 24 (Phys.) 41-54. (Fig 6 in text)

Silica dissolution

Grand Sabana karst, Venezuela

Dissolution landscape development

Pitting \rightarrow Sinkholes \rightarrow Polygonal karst \rightarrow Tower or cone karst

Quartzite Tower karst

Purnululu National Park, Western Australia Devonian quartz sandstone eroding out to a surrounding sand plain

"the most outstanding example of cone karst in sandstones anywhere in the world" - UNESCO

Fluids and materials

Earth (298 K)

Fluids

H₂O

<mark>Materials</mark>

Halite (NaCl) Gypsum (CaSO₄•2H₂O) Limestone (CaCO₃) Dolomite (CaMg(CO₃)₂) Silica (SiO₂)_x

Titan (95 K)

Methane $(CH_4) / N_2$ Ethane (C_2H_6) Propane (C_3H_8)

Acetylene (C_2H_2) Ethylene (C_2H_4) Hydrogen cyanide (HCN) Acetonitrile (CH_3CN) Acrylonitrile (CH_2CHCN) Benzene (C_6H_6) Cyanoacetylene (HCCCN)

Titan Organic Cycle Organics and CH₄

Malaska et al., Workshop on the Habitability of Icy Worlds (2014), Abstract 4020.

Laboratory experimentation

How soluble are Titan surface materials? How fast will those materials dissolve at 94 K?

Malaska and Hodyss, LPSC 44 (2013), Abstract 2744.

(Image credit Mike Malaska)

Example: dissolution kinetics of iced coffee at 273 K is slow How quickly will materials dissolve at 94 K?

Instant coffee Dissolves fast

Crystalline sugar Dissolves slow

Image credit Mike Malaska

naphthalene

Example Titan organics

biphenyl

Benzene detected by INMS: Waite et al., 2007; Vuitton et al, 2008. Benzene surface detection by VIMS: Clark et al., 2008 Tentative benzene detection by Huygens MS: Niemann et al., 2010.

Naphthalene atmospheric detection by CAPS: Waite et al., 2007.

Polyphenyls (biphenyl is simplest) atmospheric detection by CAPS: Delitsky and McKay, 2010.

50 cm global layer benzene over 1 Gyr predicted by current Titan atmospheric photochemical models

Laboratory apparatus for cryogenic fluids

Liquid nitrogen bath cools to 77 K

Interior vessel "heated" to 94 K

17

Malaska and Hodyss, LPSC 44 (2013), Abstract 2744.

(Image credit Mike Malaska)

Flush and Fill

Filter tube + UV probe

Malaska and Hodyss, LPSC 44 (2013), Abstract 2744.

UV probe optical path

UV probe in liquid ethane at 94 K

Flush and Fill operation at 94 K

16x actual speed

Benzene UV absorbance at 94 K

Comparison between ethane and pentane solutions at different temperatures 21-point calibration curve in pentane used for quantitation

Naphthalene and benzene

Detection of both aromatic molecules in ethane at 94 K

Benzene dissolution is fast at 94 K Saturation concentration (c_{sat}) and dissolution rate constant (k_{eff}) determined from UV absorbance over time

Malaska and Hodyss, Icarus 242 (2014), 74-81.

Lab results How much dissolves? c_{sat} How fast does it dissolve? k_{eff}

Experiment agrees with theoretical values

		estimated solubility in 77%	solubility in	estimated solubility in	
	chemical formula	CH4/23% N2 at	H2O at 298 K	97% C2H6/N2	
Material	(structure)	95 K [mg/L]	[mg/L]	at 95 K [mg/L]	
Halite	NaCl		360,000		
ethylene	C2H4 (H2C=CH2)	2,810		25,000	
hydrogen cyanide	HCN	1,080		17,000	
Gypsum	CaSO4		2,400		
n-butane (C4H10)	C4H10 (CH3(CH2)2CH3)	580		4649	
acetylene	C2H2 (HCCH)	1,300		2,600	
Calcite	CaCO3		400		Measured
Dolomite	CaMg(CO3)2		300		valuo
propyne	СНЗССН	8		48	value
acrylonitrile	C2H3CN (H2C=CHCN)	3.2		42.4	of benzene
carbon dioxide	CO2	44		22	in ethane at
acetonitrile	CH3CN	2.9		20.5	94 K [mg/L]:
benzene (C6H6)	С6Н6	0.78		16	18.5 mg/L
Quartz	SiO2		12		Ŭ
1,3-butadiene	C4H6 (H2C=C-C=CH2)	1.1		8.1	
cyanogen	C2N2	0.2		6.2	
cyanoacetylene	HC3N (HCCCN)	0.26		5.1	
butadiyne	C4H2 (HCCCCH)	0.25		1.5	
Gibbsite	AI(OH)3		0.001		
ice (meteor influx)	H2O	0.00000002		0.0000009	
"tholin" polymer	R(CH2)n(HCN)m	0		0	

Predicted Titan solubility values from Raulin, 1987 and Cordier, 2009. (for HCN)

solubility

Titan materials geologically soluble Titan molecules vs. terrestrial karst materials

Lifetime of materials in a surface deposit Surface flux vs. predicted dissolution in CH_4/N_2

Other implications

Ontario Lacus will be saturated from benzene falling out of the atmosphere

Ontario Lacus surface: 1.5e4 km² Ontario Lacus depth: 10 m Ontario Lacus volume: 1.5e2 km³ (= 1.5e14 L) Benzene atmospheric flux rate [1]: 1e6 molecules cm⁻² s⁻¹

sludge

Benzene saturation at 18.5 mg L⁻¹ reached in 4.5 Myr

[1] Cordier et al, Ap J 707, L128-L131.

Saturation time of Titan ethane lakes from direct benzene airfall

A 100 m deep ethane lake will saturate in benzene in 100's of Myr

Evaporites on Titan Transport and concentration of dissolved organic compounds

Terrestrial playa

1) Initial atmospheric chemistry products

2) Dissolution/transport

3) Soluble organics

4) Lakes dry out

5) Materials precipitate

Evaporation of a 10 m deep saturated aromatic-rich ethane \rightarrow playa deposit

Malaska et al., Workshop on the Habitability of Icy Worlds (2014), Abstract 4020.

Observed Ontario Lacus evaporite deposits Hyperspectral imaging shows "Bathtub ring"

Ontario Lacus VIMS cubes from T38

Unit 2 is dark organic mudflat

Unit 3 is 5 micron bright organic evaporite deposit

Reference: Barnes et al., Icarus 201 (2009) 217-225. "Shoreline features of Titan's Ontario Lacus from *Cassini/VIMS* observations." (Fig. 4 and 6) 33 doi:10.1016/j.icarus.2008.12.028

Some Titan dry lakebeds have 5 μm bright evaporite, some don't SAR radar image + hyperspectral imaging of Titan northern lakes Cassini SAR RADAR + VIMS RGB[5 μm, 2 μm, 1.28 μm]

Dry lake + evaporite

Dry lake only

Closed drainage vs. open drainage?

Titan observations

Evidence for dissolution geology from Cassini RADAR

Geomorphological evidence for dissolution geology on Titan Karst-like features near Sikun Labyrinthus, Titan [77.9 S, 29.8 W]

Polygonal Karst-like terrain on Titan Closed valleys Structural control of valleys

Polygonal Karst-like terrain, Ecaz Labyrinth, Titan [83°S, 38°W]

Polygonal Karst, Darai Hills, Papua New Guinea, Earth [6.8°S, 143.3°E] (figure reproduced from [1])

Closed valleys diagnostic for karst Sikun Labyrinth, Titan

"Karst is always developed when dolines are found and so they can be considered index landforms of karst..." [1]

[1] Ford, D. and Williams, P. "Karst Hydrology and Geomorphology" (2007), Wiley, Chichester, Great Britain.

Tower Karst^[1]-like terrain on Titan

Tower Karst-like terrain, Sikun Labyrinth region, Titan [80°S, 32.3°W]

Tower Karst, Tanpaixiang, Guangxi Province, China Earth [23.4°N, 108.8°E] (Google Earth image)

[1] U.S. EPA. "A Lexicon of Cave and Karst Terminology with Special Reference to Environmental Karst Hydrology" (2002 Edition). U.S. EPA/600/R-02/003, 2002.

Titan Labyrinth Terrain analog?

Purnululu National Park, Western Australia Devonian quartz sandstone eroding out to a surrounding sand plain

"the most outstanding example of cone karst in sandstones anywhere in the world" UNESCO

Titan similarities to Earth sinkhole lakes SAR RADAR image of hydrocarbon karst-like lake on Titan

Titan

Abaya Lacus "Kissing Lakes" T16 SAR Titan [73°N, 47°W] Lazy Lagoon in a gypsum plain, Bottomless Lakes State Park, NM Earth [33.3°N, 104.3°W] (Google Earth image)

Dissolution geology on Titan

- Theoretical calculations? Yes
- Laboratory simulation? Yes
- **Observed evaporite deposits?** Yes
- Geomorphological evidence? Yes

Planetary dissolution geology – a general process?

Circulating fluids[Example: H2O – hydrocarbons]Soluble matrix[Example: salts – organic molecules]Solvent exposure[fluid flux X duration]

Outtake

What happens when apparatus heater connections fail? → Ethane freezes around 90 K

16x actual speed

(Fiber-optic ATR probe)

Ethane freezes from the bottom, like a normal material. Dissolved N₂ exsolvates and bubbles out.