

Outline

- PSD Plan to Respond to the Decadal Survey
- Recent Discovery Selections

Planetary Program Architecture Recommended by the Planetary Decadal Survey

Large Missions ("Flagship"-scale)

"Recommended Program" (budget increase for JEO new start)

- 1) Mars Astrobiology Explorer-Cacher descoped
- Jupiter Europa Orbiter (JEO) descoped
- 3) Uranus Orbiter & Probe (UOP)
- 4/5) Enceladus Orbiter & Venus Climate Mission

"Cost Constrained Program"

(based on FY11 Request)

- Mars Astrobiology Explorer-Cacher – descoped
- 2) Uranus Orbiter & Probe (UOP)

"Less favorable" budget picture than assumed (e.g., outyears in FY12 request)

Descope or delay Flagship mission

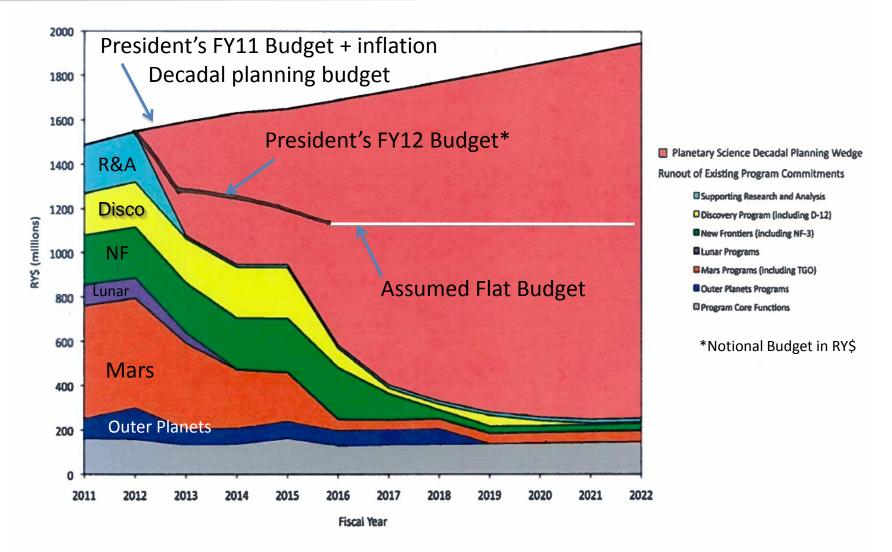
Discovery

\$500M (FY15) cap per mission (exclusive of launch vehicle) and 24 month cadence for selection

New Frontiers

\$1B (FY15) cap per mission (exclusive of launch vehicle) with two selections during 2013-22

Research & Analysis (5% above final FY11 amount then ~1.5%/yr)


Technology Development (6-8%)

Current Commitments (ie: Operating Missions)

Planetary Funding Profiles

Decadal Decision Rules

- Page 9-6: NASA's suite of planetary missions ... should consist of a <u>balanced mix of</u>
 <u>Discovery, New Frontiers, and Flagship</u> missions, enabling both a steady stream of
 new discoveries and challenges ...
- Page 9-21: It is also possible that the budget picture could turn out to be less favorable ... If cuts to the program are necessary, the committee recommends that the first approach should be <u>descoping or delaying Flagship missions</u>. <u>Changes to the New Frontiers or Discovery programs should be considered only if adjustments to Flagship missions cannot solve the problem</u>.
- Actions based on Decadal Guidance:
 - Maintain a balanced program small, medium, large missions
 - Maintain a partnership with ESA
 - Descope flagship missions as a first resort due to tight budgets
 - If flagship descopes are not sufficient then stretch out New Frontiers and Discovery A/Os

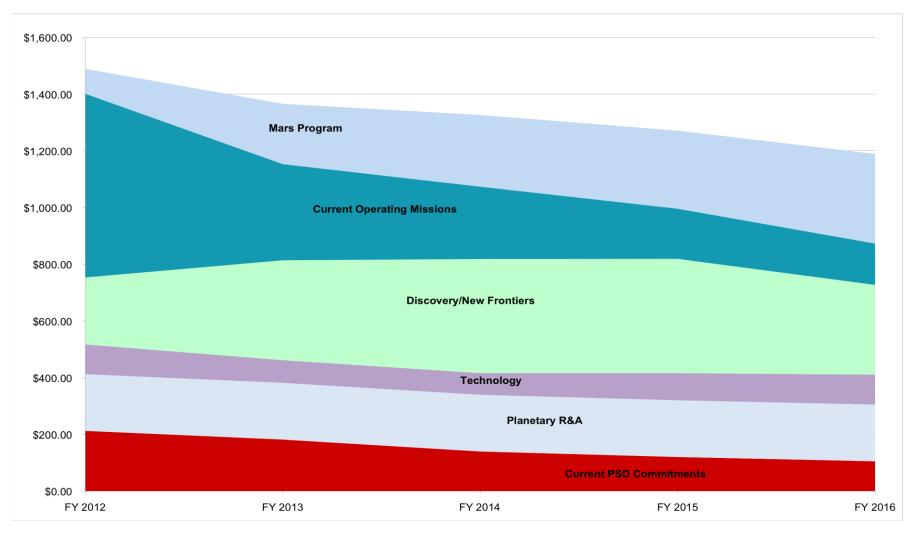
PSD Decadal Budget Planning

- Lay In Current Commitments
 - All Operating Missions Through Expected End of Life
 - Current R&A Awards
 - All missions in development or competition
 - Juno, GRAIL, MSL, LADEE, MAVEN, EMTGO
 - New Frontiers-3, and Discovery 12
 - In-Space Propulsion Technology
 - Radioisotope Power System Program
 - Pu-238 Production
- Accommodate Decadal Recommendations
 - Maintain a healthy R&A program
 - Discovery AO's on 2 year Cadence
 - New Frontiers AO's on 5 year Cadence
 - Mars 2018 Cache Rover Directly Tied to MSR
 - Includes initiation of MSR high-priority technologies wedge
- Per OMB \$10M/year set aside for cooperative activities with Human Exploration
- Full decadal recommendations greatly exceed President's FY12 Budget
 - Must use decision rules from decadal to develop a balanced budget

Approach to Develop new "Notional" Budget

- Capped R&A at \$200M/year
- Next Discovery AO on current <36 month cadence
 - All subsequent AO's accelerated to 24 Month Cycle
- Select NF-3 planned for NF-4 and NF-5 within decade
 - Will maintain New Frontiers schedule
- Extended Mission budget for ALL operating missions
 - Senior Review used for determining which missions to be extended
- Dedicated Lunar R&A wedge transferred to PSD R&A
- Residual Lunar Quest Program moved to Discovery
- JEO Descoped to Studies Funded FY11/12
 - No JEO Instrument AO
 - Budget for some radiation technology efforts

Overall Program Content



- Mars Exploration Program (Negotiated with ESA)
 - EMTGO, MOMA, Mars 2018 (JR-1), Management, Future missions
- Discovery Program
 - Strofio, LaRa, Disc-12, Management, Future missions
- New Frontiers Program
 - NF-3, Management, Future missions
- Technology Program
 - PIDDP, ASTID, ISP, RPS, MSR Tech, OP Tech
- Planetary R&A
 - Move PIDDP and ASTID to Technology Program
- Mission Commitments (operating etc.)
 - GRAIL, Juno, MSL, MAVEN, LADEE, MER, MRO, Odyssey, Mars Express, Dawn, New Horizons, LRO, MESSENGER, Deep Impact, Stardust, ASPERA-3, Rosetta, Cassini
- Other Commitments
 - Pu-238, AMMOS, OPF studies, JGO/ESA MOO, Joint coordination w/HSF

Operating
Development
In Competition

A PSD "Notional" Decadal Budget

Road to Response

- March 7, 2011 Decadal Survey Released at LPSC
- April 5, 2011 Response Strategy Briefing to OMB
- Budget Guidelines and DS Objectives Reconciled
- Cataloging of Recommendations (200+) Completed
 - Consolidated into 37 Actionable Recommendations
 - Writing Assignments
- May 6, 2011 Rough Draft Assembled
- June 12, 2011 Draft Supplied to PSS
- June 26, 2011 PSS Comments on PSD Response
- July, 2011 Final Response Delivered to NRC

Discovery 12 Selections

031- CHopper: Comet Hopper PI: Jessica M. Sunshine

Mission & Science Team:

PI: Jessica Sunshine, UMD Deputy PI: M. A'Hearn, UMD Project Management: GSFC

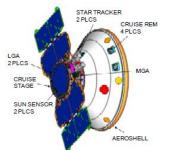
S/C: LM

Mission Ops: LM Science Ops: UMD

Mission:

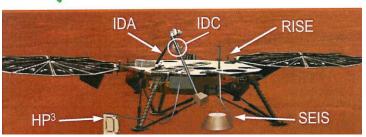
Comet Wirtanen rendezvous and landing mission using LM S/C. 4 sorties between 4.5 and 1.5 AU from Sun.

Goals:


- Map spatial heterogeneity of gas & dust emissions and surface solids
- Determine nucleus structure, geologic processes, coma mechanisms
- Document changes w/ increasing isolation

Instruments:

- CHIRS- CHopper Infrared Spectrometer
- CHIMS- CHopper Ion/Neutral Mass Spectrometer
- CHI- CHopper Imager
- CHEX- CHopper Heating Experiment
- PanCams- Panoramic Cameras


Mission Details:

- Flight: 2016 launch with Standard 4m LV, 34-day launch period
- Mission: 7.3-yr mission, 2022 rendezvous / science ops
- <u>Science Phase</u>: Remote survey and multiple in situ surface measurements
- <u>Cruise/Parked Ops</u>: Quiescent ops during cruise and between sorties, science data downlink
- Spacecraft: high-heritage spacecraft design, flightproven components for reliability and long life, large systems margins, dust covers for robustness in cometary environment, two ASRGs supply continuous power during all mission phases

008- GEMS: GEophysical Monitoring Station Pl: Bruce Banerdt

Mission & Science Team:

PI: Bruce Banerdt, JPL PM: Tom Hoffman, JPL

Deputy PI: Sue Smrekar, JPL

Spacecraft: Lockheed-Martin (LM)

Operations: JPL/LM

Payload: JPL, IPGP (France), DLR (Germany)

Mission:

 Geophysical (seismology, heat flow, planetary rotation) lander mission on Mars using Phoenix heritage spacecraft

Goals:

- Understand formation/evolution of terrestrial planets via interior structure/processes of Mars
- Determine present tectonic activity and meteorite impact rate

Payload:

- Seismic Experiment for Interior Structure (SEIS)
- Rotation & Interior Structure Experiment (RISE)
- Heat Flow & Physical Properties Probe (HP3)
- Instrument Deployment Arm (IDA)
- Instrument Deployment Camera (IDC)

Mission Details:

- Flight: 3/2016 launch w/ELV, 4m fairing; 9/2016 landing; ~6.5 mo cruise, 1 Mars yr surface ops
- •<u>Selected Systems Features (Phoenix-based design)</u>: Cruise: 3-axis stabilized, 3.2 m² UTJ solar array, X-band telecom; EDL: Landing radar, UHF telecom; Surface: 4.3 m² UTJ solar array, 2 Li-ion batteries, UHF telecom, Rad 750-based avionics
- Mass: 597.6kg dry launch, margin ≥31% (depending on ELV)
- •Surface Ops Energy: 881Wh/sol, margin 180%
- •Schedule: 39 mo B/C/D, 98 days sched reserve
- •<u>Threshold Mission</u>: Descope: HP³, SEIS SP sensors

TiME: Titan Mare Explorer PI: Ellen Stofan

Mission & Science Team:

PI: Ellen Stofan, Proxemy

Project Mgmt: APL

S/C: LM

Ops: LM, JPL (nav)

Payload: APL, GSFC, MSSS Deputy PI: J. Lunine, UA

Project Scientist: R. Lorenz, APL

Mission:

Lander msn to Titan's *Ligeia Mare* methaneethane polar sea, 96 days on surface

Goals:

- Understand Titan's methane cycle through study of a Titan sea.
- Investigate Titan's history & explore the limits of life

Instruments:

- Meteorology & physical properties (MP3)
- Mass Spec for Lake Chemistry (NMS),
- Descent and Surface Imaging Cameras

Efficient Trajectory:

- Launch 2016
- Cruise 7.5 years (EGA, JGA)
- Entry 2023

Mission Features:

- Focused science objectives
- High-heritage instruments
- Simple cruise, no flyby science
- Simple surface operations
- ASRGs, launch vehicle are GFE

"Flyby, Orbit, Land, Rove, and Return Samples"

NASA's Planetary Science

Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space