SATURN'S STRATOSPHERIC WATER VAPOR DISTRIBUTION IDP

Brigette Hesman, Gordy Bjoraker, Rich Achterberg, Paul Romani

CDAPS funded project: Award number NNX15AI78G

BACKGROUND - SATURN'S ATMOSPHERE

- Stratosphere: the mole fraction profile of H₂O falls off with increasing pressure due to condensation as the temperature drops towards the tropopause.
- TROPOSPHERE: for > solar O/H the internal H_2O is expected to be > 1000ppm.
- Measuring the column abundance of H₂O with latitude and season constrains the external source and allows us to study oxygen photochemistry
- Periodic storms, such as the GWS storm of 2010, will waft water to the upper troposphere as displayed by the blue arrow.
- H₂O abundance changes in the disturbed stratosphere following the Saturn storm allow theories to be developed about the stratospheric/tropospheric connection.

Possible Sources

- "IDP" -- interplanetary dust particles falling in to the atmosphere
 - This source would produce a nearly constant with latitude stratospheric water profile since this source is isotropic

Possible Sources

- "Particle Infall" a neutral source coming from the main rings or E-ring particles that are supplied with water from the plumes of Enceladus.
 - A narrow peak in the stratospheric latitudinal water profile over Saturn's equator would indicate neutral infall whereas a broad peak centered on the equator would be consistent with a source in the E-ring

Possible Sources

- "Ring Rain" from Saturn's main rings via ions transported along magnetic field lines
 - This source would produce a fine latitude structure with peaks at 50°N and 44°S

OBSERVATION DISTRIBUTION

- Distribution of observations taken during the Cassini mission in order to specifically target the stratospheric water problem.
- 0.5cm⁻¹ spectral resolution data using CIRS FP1
 - The resulting spatial resolution is between 5-10° in latitude

- Observations are held at a constant latitude and emission angle while the planet rotates.
- FP1 is offset to the edge of the planet for high emission angles.
 - Moves weighting functions into the stratosphere

Sample Data

INITIAL RESULTS

Pre-Storm: 2005-2010

STORM RESULTS

Storm H₂O: 2011-2013

STORM RESULTS

Profiles of Temperature, H₂O, and CO₂

STORM RESULTS

Storm CO₂: 2011-2013

CONCLUSIONS

- H₂O and CO₂ in Saturn's stratosphere are derived from one or more external sources, including the rings.
- Measurements from 2005-2010 indicate H_2O may be supplied by a neutral source but could also have a 'ring rain' component.
- Further studies of the meridional profile of H_2O needed for 2013-2017 to see what, if any, seasonal changes there are in the H_2O profile.
- H_2O in the stratospheric vortex or "beacon" reaches a maximum value of 2.5x pre-storm in July 2011 and slowly decays back to pre-storm values by Jan 2013.
- H₂O is not enhanced at longitudes outside of the beacon.
- CIRS In-beacon H₂O abundances are lower than the 3-10x increase measured by Herschel/PACS (Cavalié et al. 2012 & private communication).
- CO_2 exhibits a 1.5x to 2x enhancement over pre-storm values later than the peak in H_2O , but it also decays back to nominal values by Jan 2013.
- Saturn's stratospheric aerosols may have an icy core surrounded by hydrocarbons.
- Heating in the beacon may have caused sublimation of water ice-bearing aerosols resulting in increased abundances of gaseous H₂O. This, in turn, altered the photochemistry in Saturn's stratosphere for a year or more before returning to normal.