Capital Reporting Company Turner, Ronald

		1
1	INTERVIEW OF	
2	DR. RONALD TURNER	
3	ANALYTIC SERVICES, INC.	
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16	Conducted by Troy Cline	
17		
18		
19		
20		
21		
22		
23		

1	PROCEEDINGS
2	MR. CLINE: All right. Well, Ron, thank you
3	so much for your time today. It's exciting to be here
4	and to already be talking with you about some of your
5	interests and research. Could you tell us exactly who
6	you are and what you do now and your interest in space
7	weather?
8	DR. TURNER: Okay. I'm Ron Turner. I'm
9	officially designated a Fellow of Analytic Services,
10	or ANSER, a not-for-profit company in the Washington,
11	D.C. area. So we provide support to the government on
12	a variety of issues, and I've been with this company
13	for about 28 years. And a good chunk of that time has
14	been spent in the area of space weather, actually. I
15	primarily work lately in the area of risk management
16	strategies for astronauts that are exposed to the
17	space radiation environment. So that's the main area
18	that I focus on.
19	In the last several years, I've started to
20	get interested in the broader topic of severe space
21	weather and the impact that it might have on the
22	nation and the nation's infrastructure. You've

1	probably heard that a severe space weather event could
2	potentially knock the power grid off, and it could be
3	down for anywhere from weeks to months, and that, of
4	course, would sort of ruin your day.
5	Our company does a lot of work in homeland
6	security, and so I've got some training in things like
7	national response policy and stuff. And so in the
8	last few years, I've applied my understanding of how
9	we how the nation responds to significant events to
10	how the nation would respond to a significant space
11	weather event. So it sort of grew out of risk
12	management you know, a very narrow topic, which is
13	risk management strategies for astronauts, to a
14	broader topic, which is how the nation responds to
15	severe space weather events.
16	MR. CLINE: Now, that basically answers the
17	question of what is your primary research interest, or
18	is there more to what you'd like to say about that
19	particular …
20	DR. TURNER: No, I think that's basically my
21	research interest.
22	MR. CLINE: And I'm very interested in

1	hearing more about, when you're talking about risk
2	management for astronauts in space, because many
3	people have asked questions about with our future of
4	going into space, potentially going back to the moon,
5	potentially going to Mars and beyond. Right now, most
6	of our understandings that people have been telling me
7	is that we don't really have the ability to go for
8	six, seven, eight, nine months or a few years in space
9	without lethal doses of radiation. Is that true, and
10	how could we protect ourselves?
11	DR. TURNER: Okay. Well, yeah, radiation is
12	one of the key issues for a long-duration space
13	flight. It's long been recognized by NASA that
14	countering this radiation threat's going to be
15	critical to doing any long-duration space mission,
16	whether you're going to Mars, which might take up to
17	two to three years, or if you're even going out to
18	some any deep space location, on the moon, maybe,
19	even, for six to nine months or a year. So you've got
20	to you definitely need to worry about the space
21	radiation impacts on the astronaut.
22	There's two broad things that space

1	radiation can do to astronauts, and they're from two
2	distinct sources. You've got the really major events,
3	like a space weather storm, a solar storm that creates
4	a solar particle event, and then you have several
5	days, maybe, of really intense radiation that an
6	astronaut could potentially be exposed to.
7	Then you also have the steady background
8	drizzle of space radiation called the galactic cosmic
9	radiation. Now, the galactic cosmic radiation is
10	there all the time, but at lower doses. The
11	difference between another key difference between
12	the two is the GCR is really highly penetrating, so
13	there's not very much you can do to shield against it,
14	and it builds up over time throughout the mission.
15	The solar storms, if the space weather
16	community comes through with what it needs to do,
17	which is to provide adequate warning that a solar
18	storm is either imminent or one is ongoing and has the
19	potential to last for a long time, that space weather
20	warning goes to the operators. The operators get the
21	astronauts into shelter, and solar storms can be
22	shielded with relatively modest equipment

1	relatively modest habitats. You can shield a space
2	radiation event with relatively modest shielding.
3	And so it's really difficult for one of
4	these space weather storms to actually be lethal,
5	okay, or even reach the point of causing space weather
6	sickness if you've got a system in place for warning
7	the astronaut that the event is underway. They have
8	one to three hours, even, to get under shelter and
9	still not get a critical acute dose. So as long as
10	the space weather community is involved in the
11	planning of these missions, then that's a manageable
12	188110
	15306.
13	The other extreme, which causes more
13 14	The other extreme, which causes more consternation for the mission planners for these long-
13 14 15	The other extreme, which causes more consternation for the mission planners for these long- duration missions, especially a mission to Mars, is
13 14 15 16	The other extreme, which causes more consternation for the mission planners for these long- duration missions, especially a mission to Mars, is the GCR.
13 14 15 16 17	The other extreme, which causes more consternation for the mission planners for these long- duration missions, especially a mission to Mars, is the GCR. MR. CLINE: And GCR stands for
13 14 15 16 17 18	The other extreme, which causes more consternation for the mission planners for these long- duration missions, especially a mission to Mars, is the GCR. MR. CLINE: And GCR stands for DR. TURNER: Galactic cosmic radiation.
13 14 15 16 17 18 19	The other extreme, which causes more consternation for the mission planners for these long- duration missions, especially a mission to Mars, is the GCR. MR. CLINE: And GCR stands for DR. TURNER: Galactic cosmic radiation. Galactic cosmic ray, radiation. The GCR is the
13 14 15 16 17 18 19 20	The other extreme, which causes more consternation for the mission planners for these long- duration missions, especially a mission to Mars, is the GCR. MR. CLINE: And GCR stands for DR. TURNER: Galactic cosmic radiation. Galactic cosmic ray, radiation. The GCR is the component that I was talking about that's highly
13 14 15 16 17 18 19 20 21	The other extreme, which causes more consternation for the mission planners for these long- duration missions, especially a mission to Mars, is the GCR. MR. CLINE: And GCR stands for DR. TURNER: Galactic cosmic radiation. Galactic cosmic ray, radiation. The GCR is the component that I was talking about that's highly penetrating, but a very low very, very low dose

1	So with nominal shielding on a habitat or a
2	spacecraft, you can provide some level of protection
3	to the astronaut inside that vehicle, doubling the
4	shielding, which more than doubles, say, the mass of
5	this vehicle, which is prohibitive from a system
6	architecture point of view, only reduces that dose by
7	about maybe 20 percent. So adding mass, adding
8	shielding is not an effective way to mitigate the GCR
9	threat.
10	Now, what is the GCR threat? Well, the GCR
11	threat one of the known things that the GCR can do
12	to the astronaut, that deep space radiation can do to
13	the astronaut, is increase the probability that
14	sometime in life, they will develop cancer. Okay? So
15	it's not an immediate mission threat, it's a lifetime
16	threat to the astronaut, which, in many ways, is just
17	as important as the mission itself, because you don't
18	want to put the astronaut out there in harm's way with
19	all the mission-level risks, which are already high,
20	get the astronaut safely back to Earth, only to have
21	him or her undergo, you know, severe health problems
22	for the rest of their life. So you still want to

1 minimize the long-term health effects to these 2 astronauts.

Where we might have some room in helping the 3 mission planners is it's not likely that the GCR dose 4 would ever be lethal during the course of a mission. 5 In fact, NASA's current permissible exposure levels 6 7 limit the astronauts to a risk that's no more than 3 percent excess probability of getting cancer in 8 their lifetime. The catch is that the NASA limit is 9 at the 95 percent confidence interval; that is, 10 there's a 95 percent chance that the exposure that 11 12 they get will not cause their risk of cancer to be 3 percent for the rest of -- an additional 3 percent 13 for the rest of their life. 14

15 And that uncertainty, the 95 percent 16 uncertainty, keeping the limit inside that 95 percent 17 uncertainty, that's what limits the days in deep space 18 to 150 to maybe 220 days. It's -- it depends on the astronaut's age, it depends on the astronaut's gender. 19 20 So, you know, female astronauts are more susceptible to deep space radiation than male astronauts. So 21 there's a -- and younger astronauts are more 22

(866) 488 - DEPO www.CapitalReportingCompany.com © 2013

1	susceptible because they have a longer lifetime ahead
2	of them for the cancer to develop. Okay? So if you
3	want to keep the astronaut risk at 3 percent at the 95
4	percent confidence, then you have to severely limit
5	their time in deep space.
6	So the question is are those the right
7	guidelines? You know, is that really the right level
8	of protection that we need to impose on the mission
9	planners? Is an additional 3 percent risk of cancer
10	the right number, given all the other risks that the
11	astronauts were already posed already faced with?
12	Is the 95 percent confidence interval overly
13	conservative? Can we, you know, reduce that
14	confidence interval?
15	Those questions, actually, are being
16	addressed by a National Academy committee under the
17	Institute of Medicine, and I am on that committee, so
18	I, you know that report is due out in the March
19	timeframe, and we're going to be going back to NASA
20	with some recommendations on the framework that they
21	could use to understand what level of risk is
22	appropriate for health risks that are that have a

1	large degree of uncertainty, and the committee's
2	responsibility is to look at more than just the
3	radiation risk, because there's a lot of health risks
4	that we don't understand all the impacts on that the
5	astronauts are going to be exposed to when they go on
6	these deep space missions.
7	MR. CLINE: You know, what's very
8	interesting, I just conducted an interview with
9	astronaut Dr. Phillips, who had been at the
10	International Space Station for about six months, and
11	he said he received of course, when he came back,
12	they do the testing to find out how much radiation
13	you've been exposed to and so forth.
14	And he said he was at a particular level
15	that wasn't alarming, but it was still something he
16	wanted to pay attention to, but he said what's
17	interesting is over half or about half of the
18	dosage of radiation that he received wasn't in space,
19	it was during the testing phases of getting ready
20	DR. TURNER: That's right.
21	MR. CLINE: to go.
22	DR. TURNER: That's right. There's a

1	there when they when NASA looks at the radiation
2	exposure to an astronaut to determine whether they can
3	fly the next mission, for example, they don't just
4	look at the dosimeter that the astronaut wore on the
5	last space flight and the one before that. They do
6	look at the medical exams he's been under, he or she's
7	had. They look at their the all the radiation
8	history that they have access to, which is quite a
9	bit.
10	So, yeah, and we're reaching a point where
11	the 3 percent limit, even though you even though no
12	astronaut has come close to the 3 percent limit on an
13	International Space Station mission and is they're
14	not likely to under any one space mission, they're
15	reaching the point where, as they look at longer stays
16	on the space station, there are some astronauts that
17	come close to those limits, and so they're not you
18	know, they're sort of precluded from being selected
19	for those missions.
20	So that gets the astronauts' attention a lot
21	the Astronaut Office attention quite a bit, when
22	they realize that some of their members may be not

1	permitted to do a mission that they would love to
2	train for because they're potentially up against these
3	radiation limits. So it's a very serious issue, even
4	in the era of space station, and it's going to be even
5	more important when we start doing these deep space
6	missions, or if we choose to go back to the moon
7	someday.
8	MR. CLINE: Now, what is also interesting
9	for listeners to understand and hear about again is
10	the reason that, on Earth, we are relatively safe from
11	most of these radiations that we're talking about
12	right now. It's because of our magnetic field and
13	atmosphere?
14	DR. TURNER: And atmosphere. The
15	atmosphere's a big chunk of it is a big part of it.
16	The magnetic field goes a long way toward mitigating
17	the galactic cosmic rays. The atmosphere finishes it
18	off, finishes off that protection.
19	So we have, in the I'm trying to
20	trying to come up with numbers that that that
21	mean more than a thousand grams per cubic centimeter.
22	Say a water equivalent thickness of protection would

1 be about -- I don't know. I've got to convert a 2 thousand --MR. CLINE: Uh-huh. 3 DR. TURNER: -- in realtime, a thousand 4 5 grams per centimeter squared into a distance, which is, I guess, about ten meters --6 7 MR. CLINE: Uh-huh. DR. TURNER: -- of thickness. So we've got 8 9 the equivalent of ten meters -- I'll check this number, but I think we've got the equivalent of ten 10 meter water thickness, you know, protecting us from 11 12 the galactic cosmic rays. You're not going to put a ten meter wall around the astronauts all the time. 13 Even that seems a little short. It may be even 14 15 thicker than that, a thousand grams per centimeter 16 squared of water -- of thickness between us and the 17 (inaudible). 18 MR. CLINE: So essentially making a spacecraft out of water in a way to --19 20 DR. TURNER: Well, out of material, lossy (ph) material that's very, very thick. And, actually, 21 even the thickness of the atmosphere doesn't count, 22

(866) 488 - DEPO www.CapitalReportingCompany.com © 2013

1	because that's the narrow that's straight up.
2	Okay? We actually get protection, you know, both from
3	the ground below us and all the thicker angles that
4	the radiation has to come through from you know,
5	oblique angles from outside space.
6	So we've got a the short answer is we've
7	got a tremendous amount of shielding above us right
8	now, and we still get radiation. The background
9	radiation, there is still a significant component of
10	our natural background radiation that comes from
11	cosmic rays. Okay? Our day-to-day life, we still get
12	a significant amount of background a significant
13	fraction of our daily background radiation comes from
14	cosmic rays, even with all that shielding. So take
15	away that shielding, and now the astronauts' exposure
16	goes way up.
17	MR. CLINE: Now, in your experience I've
18	heard many people talk about the Apollo missions that

heard many people talk about the Apollo missions that have gone to the moon before and that we were very fortunate when those missions launched. There was some information, of course, and knowledge about space weather at that point, not like we have now, but that

(866) 488 - DEPO www.CapitalReportingCompany.com © 2013

1	we actually, at times, went up between storms and the
2	had the astronauts been in space during a powerful
3	storm, that could have been a different story.
4	DR. TURNER: All right. We had we had a
5	double challenge in the in the Apollo era that we
6	got lucky. One was we didn't go during a major storm,
7	like you just said. In fact, between two Apollo
8	missions, one of the there was one of the most
9	severe space weather events that we have on record.
10	An August 1972 event is one of the ones that
11	we still measure other storms against in terms of
12	severity. So one of the biggest storms we
13	radiation storms that we've had occurred between two
14	Apollo missions.
15	So the other challenge that increased the
16	risk was the actual lander the Apollo lunar lander
17	had a very thin shield, a very thin very thin
18	walls, the lunar lander, very you know, not a whole
19	lot more than what you would get from a spacesuit
20	anyway. And so had that storm happened while the
21	astronauts were on the lunar surface, especially if
22	they had been off some distance from the Lunar Module,

1	so they had to get back to the module and then get
2	back and rendezvous with the Command/Service Module
3	before they could, you know, really get safe.
4	The Command/Service Module had a fairly
5	robust amount of shielding associated well, the one
6	the piece that was in orbit around the moon and the
7	piece that they came back in had a lot of shielding
8	from radiation storms, but the lunar lander, you know,
9	had very thin walls and would have been very
10	susceptible to a solar storm.
11	And so in a way, we got lucky, but, you
12	know, you can still play the odds. A storm is about
13	two the severe part of a storm is probably two
14	days, at worst, a week, and so you put that one week
15	against all the one-week landing opportunities in one
16	year, and the odds still go down. So it wasn't that
17	miraculous that we got lucky that we, you know,
18	survived, but it still was a it still was a threat
19	that and one of the chances that we took.
20	(Off the record.)
21	MR. CLINE: Can you tell us a little bit
22	more about with what and when you were involved in

1 space weather research?

DR. TURNER: Okay, sure. Well, I got my PhD in physics in 1984, Ohio State University, in nuclear and particle physics, not at all space weather. Okay? Of course, I grew up in Florida in the Space Coast, where my father actually was a technician associated with the Apollo missions.

8 So every day at dinner, he'd come home, and 9 he'd tell us, you know, these stories about this, that, and the other that just happened, you know, when 10 he was working on the Apollo -- working with the 11 Apollo Command Module that day. Okay. So it was 12 cool. Okay? It was awesomely cool growing up, you 13 know, with the space program evolving and having a 14 15 personal connection to it.

16 So I was -- even though my academic interest 17 at the time, even as a kid, started to go into the 18 area of physics and nuclear and particle physics, 19 because that was exotic, cool stuff too, okay, I still 20 carried with me this fascination with the Human Space 21 program. 22 Okay. So fast-forward to about 1984, when I

(866) 488 - DEPO www.CapitalReportingCompany.com © 2013

1	get my PhD, and I start working for this company,
2	ANSER, Analytic Services, and Analytic Services is
3	supporting the Air Force with a whole variety of space
4	programs, and I get I am, fortunately to me,
5	assigned to support the Air Force weather satellite
6	program, which is a low-altitude weather satellite
7	that helps the that would help the Defense
8	Department with Air Force operations.
9	Well, the weather satellite carried space
10	weather instruments on it, and being a physicist and
11	liking the space program, I taught myself about what
12	these space weather instruments were doing and what
13	they were you know, what you know, why they kept
14	these space weather so-called space weather
15	instruments on their satellite that was supposed to be
16	looking at terrestrial weather, you know?
17	So I got fascinated with that. Well, we
18	also our company also helped this thing called the
19	space the Department of Defense Space Test Program,
20	and the Space Test Program flew research missions that
21	tried to get a better understanding of space weather.
22	The panel that would decide what instrument

1	would fly next was usually made up of a bunch of
2	colonels that were operators and weren't physicists,
3	and so they didn't really understand the nuances of
4	the research world when the researchers would come in,
5	and they'd say, "I've got this experiment. It's
6	looking at space weather. It's going to help you
7	communicate better because we solved the communication
8	problem." Okay? They all sounded the same to the
9	colonel board.
10	So ANSER asked me to put together sort of an
11	introduction briefing before they do their space
12	weather briefs from the experimenters, just to give
13	the panel an overview of what space weather is and
14	what the different experiments were trying to
15	accomplish and how the different experiments were
16	actually different from one another, trying to
17	accomplish different things; where there was overlap,
18	where there wasn't.
19	And, of course, my job wasn't to try to tell
20	them which ones were good or bad, it was just to tell
21	them, you know, "This is a level playing field. This
22	is what all these instruments do." And that was

1	really cool because it gave me the chance to get to
2	know the space weather researchers, especially on the
3	DoD side. Okay?
4	So I got to know a lot of the scientists
5	that were doing space weather for the Air Force and
6	the Department of Defense, and I got to know a little
7	bit about what they were trying to do, and I always
8	had to keep an operational view on what they were
9	doing.
10	So when they told me about all the cool
11	stuff they were doing, I had to think, "Okay. That's
12	all really cool. I'm a physicist. I think that's a
13	lot of fun. But why is the Air Force going to care?"
14	Okay? "What does this mean to them in an operational
15	sense that would cause them to want to continue your
16	funding?" So I had to even at the beginning, I had
17	to keep this dual hat on, the research hat and the
18	applications had, so I was the filter between the
19	scientists and the operators giving these briefs.
20	Well, that was cool, but added to that was I
21	still had this interest in the Human Space Flight
22	program. So the whole time, I would think, "Is there

1	anything I can do with this knowledge to start working
2	for NASA in some way?" And in the early '90s, I did
3	go over to NASA, literally knocking on doors, people I
4	didn't know, just saying, "Hey, I have this fun
5	interest in the radiation risk problem to astronauts.
6	Do you care that I have this interest?"
7	And amazingly enough, I found somebody who
8	said, "Yeah, we do care," and that was the Human
9	Research Program that was studying the radiation risk
10	to astronauts. Mostly they were looking at the
11	biological side of the problem; you know, what does a
12	certain level of radiation do to a cell that makes it
13	eventually turn cancerous? Okay?
14	So they didn't have a lot of they had
15	physicists on board. They had the physicists who were
16	the accelerator people who knew transport of particles
17	through matter, but they didn't have anybody in their
18	little circle of researchers that was an expert on the
19	space weather side.
20	So NASA had their space weather people over
21	here, and they had their human effects people over
22	here, and they had their operations people somewhere

1 way over there. Okay? Not really talking to one 2 another. And I said, "Well, you know, I've already 3 got this experience of trying to be the interface 4 between the science community and the applications and 5 the operations community. Maybe I can apply that same 6 7 experience to you on the radiation risk problem and 8 start looking at risk management strategies from a 9 larger perspective." And that's what caught NASA's eye, and lo 10 and behold, they did, in fact, fund me to start 11 12 working on that area, and that was thrilling for me. And I benefited a whole lot from being able to go to 13 annual space weather conferences from the operational 14 15 people and also going to science conferences that the 16 National Science Foundation would fund. 17 So I'd go to talk to the scientists, and 18 they would know nothing about the biological side, so they'd talk to me, and then I'd go to the biologists, 19 and I'd talk to them about the space weather side. So 20 I managed, you know, to be, again, just like I was for 21 the Air Force, sort of an interface between these 22

(866) 488 - DEPO www.CapitalReportingCompany.com © 2013

1	different communities, and that was really, really
2	cool. So basically, I just kept adding to that, and
3	that's how I you know, that's how I got really
4	going in space weather.
5	Now, recently, I mentioned already that
6	because my area of expertise became radiation risk
7	management for astronauts, my company works in the
8	area of homeland security, and so I did broaden that
9	research area or that interest area into how one,
10	you know, applies national risk management strategies
11	against national effects of space weather. So that's
12	another area of interest that I've developed, and
13	that's slightly more recent.
14	MR. CLINE: When you talk about space
15	weather effects nationally, you're talking about
16	societal effects upon electrical grid systems, power
17	DR. TURNER: Yeah. We've been lucky that we
18	haven't had a sort of a super storm in space
19	weather in the last 50 years or more. Okay? We've
20	had severe storms, but we haven't had a super storm,
21	super storms like what happened in the mid-18 in
22	1856, this thing called the Carrington Event, which

1 was a really super storm. 2 Obviously, in the 1850s, we didn't have massive power grid problems, but we did have telegraph 3 lines that went from one city to another city, and 4 5 this storm, the Carrington Event storm, was so severe, it coupled into these long transmission lines that 6 7 carried telegraph cables from one to another --8 coupled into those lines and actually put enough 9 energy into those lines that it caused the telegraph equipment to overheat and burn entire shacks down. I 10 mean, that's how much energy got dumped into the 11 12 system, and that's one, you know, very, you know, simple system that had a -- that one of these super 13 storms interacted with. 14 15 So now we look at our society the way it is 16 today, and we ask, well, we've got power grids that, 17 you know -- that go across the country. We know that 18 there have been storms that haven't been as severe as the Carrington Event, but they've been severe enough 19 20 to cause electrical grid disruption, melting power transformers in Quebec and in South Africa, so it can 21 22 happen. We've got in existence proof that it can

1 happen.

2	The question is, you know, how likely is it?
3	We don't know, because we don't know how often the
4	events like the Carrington storm are. Are they one in
5	500 year events? Are they one in a hundred year
6	events? We don't know. And we also don't know
7	exactly how a storm like that would play out locally,
8	you know, from the on the Earth on a local time
9	scale. So there's a lot we don't know about the
10	physics, but we're learning a lot. There's a lot of
11	research going on to try to quantify those effects.
12	My side of the problem doesn't have anything
13	to do with the physics, other than trying to keep up
14	with what the research area is. Rather, because our
15	company does a lot of homeland security work, I look
16	at what the national policy framework is, and how
17	would that national policy framework be invoked if we
18	had one of these large events or thought one of these
19	large events was pending? So that's been a really fun
20	area well, interesting area for the last few years.
21	(Off the record.)
22	MR. CLINE: Can you tell us some of the key

(866) 488 - DEPO www.CapitalReportingCompany.com © 2013

events or a turning point in space weather research in 1 2 your experience? DR. TURNER: Actually, that's an easy one 3 for me, because I think that there's one very, very 4 5 significant event that was a major milestone in making space weather what it is today as a discipline, and 6 7 that was a number of years ago, when NASA first started making data from one of their satellites 8 9 available in near realtime to the forecast community, and that was the WIND spacecraft. 10 The WIND spacecraft was out there trying to 11 12 monitor, as the name implies, solar wind parameters, parameters of the solar wind, and it had a number of 13 other observations that it made, but, again, mostly to 14 15 characterize the solar wind. 16 The solar wind gives us the background that 17 all the other space weather effects ride on top of, so 18 you need to know the solar wind conditions are in order to estimate, you know, what the impacts might be 19 20 into the Earth. 21 So when NASA started making this wind data 22 available to the operational forecast community --

(866) 488 - DEPO www.CapitalReportingCompany.com © 2013

1	NOAA in Boulder has a group that does the even then
2	did the routine national weather forecast. Well, it
3	revolutionized their ability to do realtime
4	forecasting, because they had a least a little bit of
5	data that was not just, you know, based on secondary
6	observations, but was one of the primary drivers.
7	They knew when the solar wind speed was
8	increasing, when the magnetic fields were increasing,
9	the interplanetary magnetic fields were increasing.
10	They had direct measures, more sort of like us now
11	not just, you know, wondering is the rain going to
12	increase tomorrow, but actually knowing that a hundred
13	miles away, a front is crossing, and then 50 miles
14	away, when did that weather front, you know, get there
15	so that now we could forecast when that weather
16	forecast was going to get to us.
17	By having this realtime data available from
18	WIND, we started to get a realtime sense of what the
19	space weather environment was. That led NASA to
20	expand that program because it was so effective. Now
21	we have data more and more data started to become
22	available in realtime to the operational community,

1	including observations of the sun from the SOHO
2	spacecraft, even more precise data and more regular
3	data from the ACE spacecraft, and today we just rely
4	on those things.
5	SOHO has been replaced in realtime by the
6	Solar Dynamics Observatory, SDO, so there's still
7	realtime data on watching the sun, WIND data, which,
8	admittedly, even at the time, was spotty, because it
9	wasn't always there. There were periods when the wind
10	data when the WIND spacecraft wasn't where it
11	needed to be to give realtime warning to Earth.
12	But now we have the ACE spacecraft that is
13	in the right place to give the realtime warning. Of
13 14	in the right place to give the realtime warning. Of course, the ACE spacecraft has been up for a very long
13 14 15	<pre>in the right place to give the realtime warning. Of course, the ACE spacecraft has been up for a very long time, and we don't know how long it's going to last.</pre>
13 14 15 16	<pre>in the right place to give the realtime warning. Of course, the ACE spacecraft has been up for a very long time, and we don't know how long it's going to last. You know, there's a new spacecraft being planned to</pre>
13 14 15 16 17	<pre>in the right place to give the realtime warning. Of course, the ACE spacecraft has been up for a very long time, and we don't know how long it's going to last. You know, there's a new spacecraft being planned to take ACE's place, at least as an interim replacement,</pre>
13 14 15 16 17 18	<pre>in the right place to give the realtime warning. Of course, the ACE spacecraft has been up for a very long time, and we don't know how long it's going to last. You know, there's a new spacecraft being planned to take ACE's place, at least as an interim replacement, to make some of the ACE measurements.</pre>
13 14 15 16 17 18 19	<pre>in the right place to give the realtime warning. Of course, the ACE spacecraft has been up for a very long time, and we don't know how long it's going to last. You know, there's a new spacecraft being planned to take ACE's place, at least as an interim replacement, to make some of the ACE measurements. So that really revolutionized, to me, the</pre>
13 14 15 16 17 18 19 20	<pre>in the right place to give the realtime warning. Of course, the ACE spacecraft has been up for a very long time, and we don't know how long it's going to last. You know, there's a new spacecraft being planned to take ACE's place, at least as an interim replacement, to make some of the ACE measurements.</pre>
13 14 15 16 17 18 19 20 21	<pre>in the right place to give the realtime warning. Of course, the ACE spacecraft has been up for a very long time, and we don't know how long it's going to last. You know, there's a new spacecraft being planned to take ACE's place, at least as an interim replacement, to make some of the ACE measurements.</pre>

1 just had.

2	The research community realized that there
3	was a lot of advantages to having this realtime data
4	stream available. It became a lot easier to get
5	access to realtime data, even if you weren't the
6	principal investigator of that instrument. So while
7	there was always a lot of good sharing of space
8	weather data, now the sharing was enhanced, was more
9	realtime, and you could test your own theory before
10	you went public, you know, you could back in your
11	own lab, you could test, well, did that really work or
12	not? It didn't work. Let's tweak the parameters.
13	Ah, now it's starting to work a little bit.
14	Things like the Community Coordinated
15	Modeling Center at Goddard were implemented to enhance
16	this modeling community and what it did. So, really
17	and I think a whole lot of that a lot of the
18	impetus for that was when NASA started making realtime
19	data available to the operational community.
20	(Whereupon, the interview of Dr. Ronald
21	Turner was concluded.)
22	
23	

(866) 488 - DEPO www.CapitalReportingCompany.com © 2013

Capital Reporting Company Turner, Ronald

		30
1	CERTIFICATE OF TRANSCRIPTION	
2		
3	I, MARY E. YOUNG, hereby certify that I am not	
4	the Court Reporter who reported the following	
5	proceeding and that I have typed the transcript of	
6	this proceeding using the Court Reporter's notes and	
7	recordings. The foregoing/attached transcript is a	
8	true, correct, and complete transcription of said	
9	proceeding.	
10		
11		
12		
13	Date Mary E. Young	
14	Transcriptionist	
15		
16		
17		
18		
19		
20		
21		
22		