and the search for habitable worlds

Like ancient explorers who looked to the stars to guide them to new worlds, astronomers today use stars to discover worlds many light years beyond our solar system. By studying stars and their unique influence, we can learn a great deal about their worlds - even their potential to sustain life as we know it.

ZETA OPHIUCHI
While they're easy to spot in the night sky, O-type stars like Zeta Ophiuchi are the most rare. We haven't yet found any planets orbiting one. Planets that do exist likely have been stripped of their atmospheres by these stars' strong ultraviolet light. These stars.are so massive that they go through their entire lifecycle and explode in a supernova while most stars are still forming

Stars are born in clouds of dust and gases that clump together in the extreme cold of space. The clouds get so dense that they eventually collapse, and produce a reaction called nuclear fusion, which fuels the star. The material that surrounds a star during birth determines its mass, its future and the future of its planets. (Planets form from less than 2% of the stellar material surrounding the star.)

andromeda constellation (168 Light-years)
KAPPA ANDROMEDAE
This B-type star's only known planet may not be a planet at all, but a failed star called a brown dwarf. In either case, habitable worlds around Kappa Andromedae are unlikely given the star's temperature, brightness and short lifespan.

FOMALHAUT

A bright, hot and short-lived A-type star, Fomalhaut will quickly push its habitable zone outward as the star ages and expands. This may be good news for its only known planet, which is far beyond the current habitable zone. But will it be enough time for life to evolve? It's unclear.

THE SEARCH FOR HABITABLE WORLDS

Stars inflüence the habitability of their planets in two key ways. Their brightness and temperature create an area known as a habitable zone, where conditions are just right for liquid water to pool (a key ingredient for life on Earth). And the star's lifespan tells us how long life has to form and evolve before the star makes the planet uninhabitable. Explore the real stars
plotted here (sized to scale) with their habitable zones to discover how each star influences its planets and their habitability.

All stars, even the Sunf, will eventually age and die. Most kinds of stars grow into red giants then collapse into cool, dense stars called white dwarfs. The highest mass stars explode violently as supernovas or even form black holes. The current age of the universe is 13.8 billion years, far shorter than the expected lifetime of the smallest stars, so their fate is still a mystery.

DEATH

LYRA CONSTELLATION (1, 120 LIGHT-YEARS

This orange (K-type) star is only about half as old as our Sun, but it will live much longer, giving its planets more time to evolve. Scientists have discovered a planet slightly larger than Earth, Kepler-442b,

orbiting the star at a distance hospitable to life.

With its ideal lifespan, brightness and temperature, the sun is our point of reference in the search for habitable worlds. Yellow (G-type) stars make up 8\% of the estimated one billion trillion stars in the universe, so finding an Earth-like planet around such a star may just be a matter of time.

