
Are you prepared to leave 99% of your data on another planet?

By Don Davis - Donald Davis; official site, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=1684410

Mass Spec Type Mission Launch Samples/Sec

Quadrupole MSL 2012 50

Ion Trap ExoMars 2028 50,000

Orbitrap Future TBD 5,000,000
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Long Term Goal: In Situ Analysis

Science Autonomy Concept

Communication 
limitations

Remote destinations and 
extreme environments 
involve longer 
communication delays and 
smaller data downlink 
capacities, while also 
limiting ground-in-the-loop 
interactions

Detection 
challenges 

Scientists will not 
be able to guide 
spacecrafts’ 
instrumentation in 
detection 
opportunistic 
features of interest

Data 
Prioritization 
Future 
instruments will 
certainly generate 
more data: data 
prioritization is 
vital to optimize 
mission science 
return

The ability of a science instrument to analyze 
its own data:

- to calibrate itself
- optimize ops parameters based on real-

time findings
- make mission-level decisions based on 

scientific observations
- determine which data products to 

prioritize and send back first

Analyze (Machine 
Learning process)

Collect spectra from 
Planetary Body 

More data

Adjust 
Strategy

Yes

No

Transmit 
to Earth

Interest?
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Some ML Projects Within NASA Planetary Environments Lab

FLaRe Ocean World Analogs (B. Theiling)

Dragonfly Automation Ideas (Brainstorm 
stage) (DraMS Science + Software teams)

MOMA ML for Decision-Making (MOMA 
Science team, E. Lyness, V. Da Poian)

Innovative Approach (Transfer Learning) 
on SAM data (V. Da Poian, E. Lyness)
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Machine Learning Introduction

Supervised Learning

Data: every example has features AND 
labels
→ image labeled “cats” vs “not cats”

Model: trained to input features and 
output labels

→model makes decision
→ probability view, model learns: 

p(Y I X)

Learning with a teacher: explicit 
feedback in the form of labeled 
examples
→ goal: make predictions
→ + : good performance
→ - : labeled data is difficult to find

Examples: Regression, Classification 
(sort documents by topic), Ranking

Unsupervised Learning

Data: none of the  example has labels
→ unlabeled images

Model: trained to input features and 
reveals its unobserved structure 

→model describes the data
→ probability view, model learns: 

p(X)

Examples: Clustering, Dimensionality 
reduction (or Manifold learning) 

Learning by oneself: only observed 
unlabeled examples

→ goal: uncover structure in data
→ + : easy to find a lot of data
→ - : finding patterns of interest

*there is also semi-supervised, reinforcement learning

Types of Machine Learning Algorithms

Data 
(“experience”)

Method, model, 
hypothesis

Computational 
approach 
combining these 2

3 Primary Components 
of ML
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ML for Data Constrained Planetary Mission Instruments

Goal: detect the presence of certain families (rocks, 
minerals, ionic compounds to help understanding Mars’ 
potential for past habitability) of chemical compounds in 
geological material samples using evolved gas analysis 
(EGA) mass spectrometry data collected for Mars 
exploration missions.
Features: each sample is represented by EGA 
measurements with: time (in s), temp (in C), m/z (of 
measured ion), abundance (rate of ions detected/sec)

Labels: multilabel binary labels for the training set. 10 
label classes (Basalt, Carbonate, Chloride, Iron Oxide, 
Oxychlorine, Silicate, Sulfide, Oxalate, Sulfate, 
Phyllosilicate) each indicating presence of material in 
the sample belonging to the respective rock, mineral, 
ionic compound families 

713 participants from 73 
countries

656 submissions (446 
submissions performed better 
than benchmark)

5,870 unique visitors to webpage 
from 130 countries

3 winners solutions

Idea of Open Science ML Challenge and Setup Implementation w. 
DrivenData

Software engineer, interest in 
ML (won several challenges)

- Represented the mass 
spectrum as a 2D image 
(temperature vs m/z 
values) to use as inputs to 
ML models

- Data augmentation during 
training

Commercial 
instrument

SAM testbed 

Results: 1st place winner

Transfer Learning 
Knowledge

Source 
Data

Source 
Labels

Source 
Model

Commercial 
Instrument 

Expectations: Innovative methods (e.g., 
transfer learning, data augmentation) to help 
analyze and interpret the measurements 
of planetary instruments (limited 
datasets constraining ML applications)

Target 
Data

Target 
Labels

Target 
Model

Planetary 
Instrument 

Due to the lack of flight-like instruments data, we investigate the use of commercial instruments to train ML algorithms 
and then tune them on flight-like data. This ML open science challenge (organized with DrivenData) is a proof-of-

concept using SAM data onboard Curiosity.
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