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The wealth of geologic information bound in martian
ice (Figs. 1, 2), including climate cycles, potential
biomarkers, atmospheric particulates, and sources of
H,O that may drive alteration within the critical zone
(CZ: zone of interaction between the atmosphere and
the porous upper crust) has long been recognized
(Figs. 6, 8). Much progress has been made in the last
decade, in interpreting polar ice sheet [Bapst et al.,
2019] and midlatitudinal ice [e.g., Dundas et al.,
2018; Harish et al., 2020; Piqueux et al., 2019] b«
processes. fo
Despite recent advances, outstanding questions A
remain at the forefront of exploration [cf., Bramson
et al., 2021]. Martian midlatitudes provide a notable . .
opportunity to explore these in the evolution of ice e ‘ & | R
beyond the poles (Figs. 1, 2), as emphasized in the | i 5

Fig. 9 Example rover concept and payload

F1 g 9a. Mars helicopter scout

to survey the glacial landscape,
extending to geologic mapping
and site optimization for
englacial sampling. Imaging of
periglacial landscape and
unstable zones. [Balaram, 2021]
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B i<y Flgure 2 . Distribution of ice-dominated landscapes (colored icons) and relative

concentration of stoichiometric H,O in bulk soil (mass fraction as %, color scale) from regional
scale neutron spectroscopy representative of decimeter scale soil depths. [Harish et al., 2020]

and pits [Dundas et al.,, 2018]. Accordingly, our -
mission concept—aptly eponymous with the large
and fast-receding Himalayan glacier, Gangotri—
would investigate the geologic origins of
midlatitudinal martian glaciers. Gangotr1 would help
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Flgure 1 . Sites of martian ground ice determined from satellite

to characterize Amazonian climate evolution via infrared spectroscopy (MRO-CRISM) and optical imagery (MRO- Figure 3. Conceptual schematic of glacial profile for mission sampling
Honeybee Robotics’ hybrid thermo-mechanical drill HiRISE). As in Figs. 4 and 5, ground ice occurs at hundreds of meter o _ . . .
[Mellerowicz et al., 2022] for deep and possibl (intracrater: UCI, UC2) and up to tens of km (red icons) lateral scales. 1. Dry soil, lnclqdlng tens of micron size dgst grains,

. D : : ; DSSIDLY S ice sh likelv hundreds of meters thick. F h kb forming a mantling unit cm — m thick over ice sheets
multiple englacial sampling, including for in situ ome ice sheets likely hundreds of meters thick. From the work by

resource use (Fig. 7). Gangotri would use regolith Harish et al. [2020]

compositional measurements to analyze ice-regolith
interaction, and stable isotope measurements to
characterize fundamental exchange processes (Fig. 8)
of major ice reservoirs (Fig. 3). Meanwhile,
geophysical observations would cross-calibrate
composition, with sensitivity to the presence of
brines or meltwater. Example platform and payload
are shown in Figs. 9a-1, linked to the science

2. Underlying perma-frost equivalent ice rich soil
unit(s) of meter depth scales.

3. Ice layers, possibly containing unconformities,

;rrafi?blgz I?;‘;glx (S"l:zl))le STM-A, B), and spacecrait bedding, laminations and massive units. Primary Fi1 g Oc. Mobile to stationary rover-based platform to sample the glacial
i TP - ' archive of climatologic and geologic (e.g., column at an optimal site for the science traceability matrix (Tables STM-A,
globally dispersed volcanic ash columns) events. B). Mobility will also enhance recoverability from unforeseeable drill

May reach 0.1 — 0.2 km depths in places (Fig. 4). obstructions by relocating to alternative sites.

Flgure 4 Example of southern mid-latitudinal ice sheet

with collapse scarps and pitting (Geographic and geochemical
context in Figures 1 and 2, respectively). By Dundas et al. [2018].
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borehole to rover deck.
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