NASA's Surface Topography and Vegetation Study Coastal Geomorphology

Name Lori Magruder University of Texas at Austin

© 2023. All rights reserved.

Coastal Geomorphology Questions

High level question:

How are coasts changing by natural and human influences and what are the impacts?

Sub questions

- What are the current and predicted threats to marine ecosystems and coastal/benthic habitats (e.g. coral reef, saltmarsh, mangroves, seagrass, oyster reef, etc.)?
- How will coasts change by rising seas, erosion, subsidence, accretion and anthropogenic influences?
- What are the predicted impacts of coastal storms and surge on coasts?
- How can we locate shoals, reefs and other hazards to marine navigation and how are they changing with time?
- How can we quantify the flows of energy, water, carbon, and nutrients?
- What are the structure, function and biodiversity of Earth's marine ecosystem, and how and why is it changing in time and space?

Coastal Geomorphology Goals

Overarching goal: Assess, model and predict inundation, coastal erosion and coastal vulnerability using seamless data across the land-water interface

Sub goals

- Quantify the increasing vulnerability of coastal communities to water inundation and erosion from growing fetch, sea level rise and permafrost thaw as weather events become more intense.
- Assess and model the processes that drive the predicted impacts of sediment transport, erosion and deposition?
- Accurately forecast large-scale geological hazards in a socially relevant timeframe.
- Quantify the impact of land cover change, modification and soil disturbances on water, carbon, sediment and energy fluxes at the land-sea continuum.
- Support safety of marine navigation in nearshore environments.

Coastal Geomorphology Science Gaps

Needed modeling/simulations/investigations

At the in situ, airborne and spaceborne level we need capacity to

- Explore sensitivity studies to data product quality (vertical and temporal resolution) for:
 - habitat classification
 - habitat variability
 - benthic community composition
 - habitat change estimation
- Pursue bathymetric uncertainty propagation to benthic habitat maps/products and change estimates
- Understand topo-bathy data quality for forecasting long-term morphological change
- Ability to decouple long-term geomorphic change and habitat change from seasonal variation (erosion and accretion patterns, growth cycles)

Coastal Geomorphology Measurement Needs

Most stringent requirements listed among specific coastal science objectives

Requirements associated with measurements of:

Shallow bathymetry Vegetation structure Land topography Water surface heights

Aspirational and Threshold

Duration (years) 8 years 3 year

Max Bathymetric depth: 30 m 10 m

Vertical resolution: 1 m 2 m

Coverage: 90% 60%

Latency: 30 days 90 days

Vertical Accuracy: 10 cm 20 cm

Geolocation Accuracy: 1 m 3 m

Rate of change accuracy: 20 cm/yr 40 cm/yr

Repeat Frequency: 1 month 5 months

Coastal Geomorphology Needed Experiments

Existing and proposed:

Multi-temporal, variable-accuracy data collection campaigns to assess sensitivity to product quality and temporal resolution.

- In Situ:
 - Validation of higher altitude collections
- Airborne campaigns:
 - Determine optimal combination of sensors and explore algorithmic solutions for product development
- Satellite: Coverage analytics through simulations of performance capability/possibilities
 - Using existing optical imagery/SAR to infer bathymetry from sea surface/wave characterization
 - Explore uncertainties and uncertainty propagation using existing ICESat-2 bathymetry data
- Data sets: Topo-bathy DEMs,
- Overall:
 - Trade studies and algorithm development for product production:

Summary

- Key topics supported by topo-bathy measurements for coastal geomorphology
 - Storm surge and inundation hazards
 - Relative sea level rise
 - Shoreline erosion and sediment transport
 - Benthic habitat and marine ecosystems
 - Tidal interaction with mangroves and salt marshes
 - Marine archaeology
 - Marine navigation and hazards
- General measurement needs:
 - Coincident and combined optical imagery or radar with lidar for wide spatial coverage and high vertical accuracy
 - Shallow bathymetry
 - Vegetation Structure
 - Land topography (DEMs across land-water interface)
 - Water surface height (sediment transport, inundation modeling, discharge studies)
- Coverage and repeat frequency needs
 - Monthly measurements, global coastline coverage with ~30 m depth capability.
- Thoughts about future activities
 - Technology combinations and data fusion to achieve measurement needs
 - Stereoimaging/lidar, Spectral imaging/lidar, radar
 - Need simulation studies for distributed systems, airborne/spaceborne combinations, Airborne campaigns
 - Tasking and mapping capability investigations

7