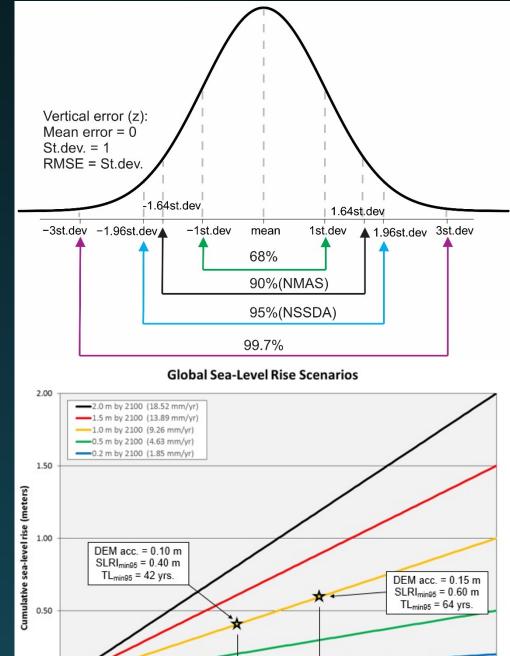
Elevation Data in Coastal Zone: Accuracy, Scale, and Resolution

Monica Palaseanu-Lovejoy USGS GMEG


Mapping Matters:

1. Accuracy / Uncertainty

- Qualitative vs. quantitative
- National Map Accuracy Standard (NMAS, 1941)
 - No more than 10% shall have an error greater than ½ of the contour interval at 90% C.I.
 - VMAS = 1.6449 * RMSE(z)
- ASPRS standards (1990)
 - Minimum RMSE no more than 1/3 of the contour interval at 90% C.I. (Class 1 map)
- National Standard for Spatial Data Accuracy (1998)
 - Acc(z) = 1.96*RMSE(z)

1a. Purpose

- What is the smallest increment of water level inundation
 - A contouring operation on a DEM
 - SLRI(min) = DEM accuracy * confidence interval factor(CIF): 2 for 68% C.I.; 3.29 for 90% C.I.; 3.92 for 95% C.I.
- What is the minimum Planning Timeline (TL(min))
 - The time interval required (at a given SLR rate) for the cumulative SLR to reach the minimum water level increment afforded by the elevation data
 - TL(min) = SLRI(min) / annual SLR rate
- What is the minimum significant topographic change

2028

2034

2056

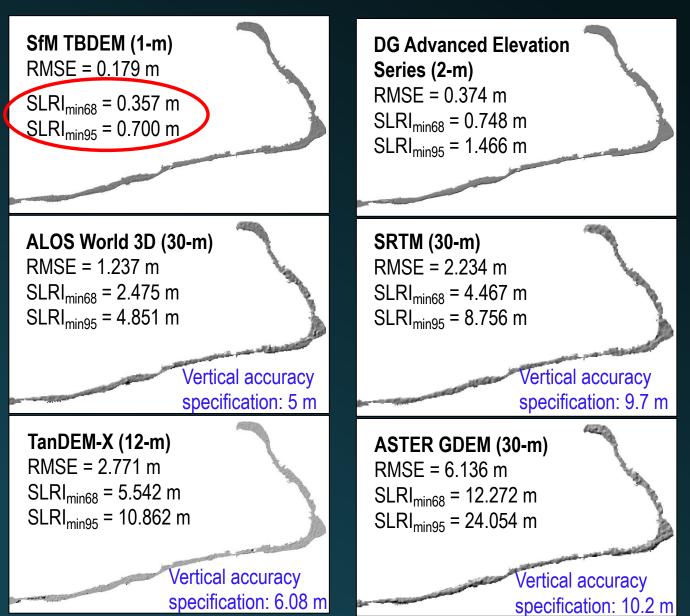
Year

2082

2100

2010

1992



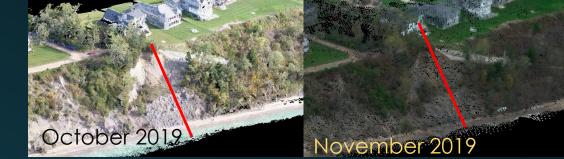
For a given DEM with a vertical accuracy of xx cm, what is the minimum SLR increment or water inundation level that can be effectively modeled?

Coastal Assessment

Questions

- What vertical accuracy is needed for elevation data to map the potential impact zone at 95% C.I. for xx cm of cumulative SLR by year 20xx?
- What is the cumulative DEMs accuracy required to model xx cm of significant topographic change?

Gesch, D., Palaseanu-Lovejoy, M., Danielson, J., et al., 2020, Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands Using A High-Accuracy DEM, *Remote Sensing*, *https://doi.org/10.3390/rs12010154*


Mapping Matters: 2. Resolution / Scale

- Global DEMs
 - Commercial: ~10 m
 - Free license, public domain: 30-m, 12 m
- Regional and national scale:
 - Commercial: Stereo satellite imagery & lidar 1-m, 2-m
 - Free license, public domain: 3-m (NED), 10-m
- Local / site scale:
 - Commercial and free license, public domain: stereo satellite imagery, lidar, SfM 1-m, cm-scale

2a. Purpose

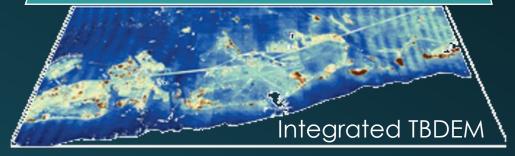
- What is the smallest feature we can identify at a certain DEM resolution?
 - Morphology scale: landslides, dunes, bluffs, slope, beach, sediment budget, etc.
- What is the minimum significant topographic change?
 - Vertical vs. horizontal

— November 2019

15 m

Miami Park, MI

- Bathymetry: water depth or underwater terrain elevation
- Bathymetry: Approximately 40% of the U.S. exclusive economic zone and about 4% of the Great Lakes have high-resolution bathymetric data available, and globally about 80% of the oceans were mapped at the rather coarse resolution of hundreds of meters (Westington et al.,2018)
- Global topo-bathymetry (TBDEM)
- Challenge: Integrating topography and bathymetry: majority of bathymetric data are depth soundings relative to a certain water level datum
- Coarse:
 - 30 arc-second grid (~ 1 km) SRTM30+
 - 15 arc-second grid (~450 m) (SRTM15+, GEBCO-2023, SEABED 2030)
 - 1/16 arc minutes (~115 m) (EMODnet-Bathymetry)
- Near shore and coastal processes require high quality bathymetry and / or TBDEM data
 - Topo-bathymetric lidar (1-m, max 40 50 m depth)
 - Satellite derived bathymetry(SDB, 30-m, 10-m, 2-m, 1-m, max 20 to 40 m depth) and / or stereo satellite derived TBDEM (1-m, 2-m, max 10 to 30 m depth)
- Local / regional TBDEM (1-m, 3-m)
 - USGS Coastal National Elevation Database (CoNED) Applications Project


- Satellite derived bathymetry
 - ~ 5 decades of development
 - Landsat archive became freely available in 2008 and Sentinel-2A in 2015
 - Methods developed by Stumpf et al. (2003) and Lyzenga et al. (2006)
 - Needs auxiliary bathymetry data: band ratio regression against some sample bathy data (soundings, lidar, ICESat-2)
 - Obtains only water depth
 - No comprehensive integrated opensource software
- Satellite derived TBDEM
 - Available integrated open-source software: SaTSeaD bathymetry module for NASA Ames stereo-pipeline(ASP)
 - Derives underwater terrain elevations, not water depths
 - No external bathymetry data necessary
 - Uses stereo imagery (PAN, Green, NIR)

TBDEM: NASA ASP with SaTSeaD

Stereo imagery (Green or PAN)

Land / water mask (NIR)

Water surface plane a*X+b*Y+c*Z+d=0 Local stereographic projection

Palaseanu-Lovejoy, M.; Alexandrov, O.; Danielson, J.; Storlazzi, C. SaTSeaD: Satellite Triangulated Sea Depth Open-Source Bathymetry Module for NASA Ames Stereo Pipeline. Remote Sens. 2023, https://doi.org/10.3390/rs15163950

What kind of spatial/temporal requirements do we need?

- Coastal areas are very dynamic: seasonal changes, event driven, change order of cm to m
- Coastal change can be ephemeral but important
- What would be game-changing for our specific applications, enabling entirely new possibilities?
 - What we want: Seasonal 1-m resolution TBDEM with up to 10 cm RMSE(z) (topo) and 15 cm RMSE(z) (nearshore bathy) for the nation
 - What is good enough: yearly and event driven 3-m resolution TBDEM
- What kind of data latency do we require?
 - As soon as possible usually event driven
- What is our wish list beyond current capabilities?
 - High accuracy & temporally dense 1-m resolution TBDEM (up to 40 m depth)
 - Freely available stereo and multi-stereo satellite imagery with cloud masks
 - Spatially near-continuous satellite topo-bathy lidar
 - Open-source software at production level to process regional data efficiently
 - A nice user interface for NASA ASP to process both topo and TBDEMs
 - Add "real" multi-stereo-vision to NASA ASP (topo and TBDEM)
 - Enhanced capabilities: use of cloud masks; ICESat-2 for alignment
 - What kind of product (level) would be most useful to us?
 - Stereo and multi-stereo imagery with cloud masks (we use 1B level DG)
 - 3-D data point clouds with RGB colors (and classification)
 - High-resolution and accuracy raster TBDEM (with floating point elevation values)
 - Automatic metadata generation to include vertical RMSE, correct coordinate system and datum, processing parameters / decisions
 - Topographic change on demand: OpenTopography: On-Demand Vertical Differencing of USGS 3DEP and NOAA Lidar Topography (~20% of the contiguous United States)