NASA's Surface Topography and Vegetation Study Mapping Earth's changing surface and overlying vegetation structure

Andrea Donnellan

Study Lead Jet Propulsion Laboratory California Institute of Technology

Craig Glennie Study Technology Co-Lead National Center for Airborne Laser Mapping University of Houston

Decadal Survey

- Targeted Observable:
 Surface Topography and Vegetation
- High-resolution global topography, including bare surface land topography, ice topography, vegetation structure, and shallow water bathymetry
- Candidate Measurement Approach: radar or lidar [Stereoimaging]

THRIVING ON OUR CHANGING PLANET

The National Academies of SCIENCES • ENGINEERING • MEDICINE

A Decadal Strategy for Earth Observation from Space

https://www.nap.edu/catalog/24938/thriving-on-our-changing-planet-a-decadal-strategy-for-part

STV Incubation

- Decadal Survey: "A new program element called 'Incubation,' intended to accelerate readiness of high-priority observables *not yet feasible for cost-effective flight implementation*."
- STV is not a mission or an observing system
- The STV Incubation Study is not a Designated
 Observables Study
- The STV Incubation Study is focused on:
 - State-of-the-Art Evaluation
 - Identification of Gaps and Investment Needs
 - Preliminary Requirements Refinement

• Managed by ESTO and run as a partnership with R&A

- Mix of activities:
 - Technology development
 - Modeling/system design and analysis
 - Small scale pilot demonstrations

2021 STV Incubation Study Report

OBSERVING EARTH'S CHANGING SURFACE TOPOGRAPHY AND VEGETATION STRUCTURE

A FRAMEWORK FOR THE DECADE

NASA's Surface Topography and Vegetation Incubation Study White Paper April 2021

> National Aeronautics and Space Administration

https://science.nasa.gov/earthastlupdated/11/13/23al-stv

STV Study Objectives

- Develop STV science and architecture as input to the next Earth Science Decadal Survey
- Advance each PI-led research projects
- Develop roles and responsibilities for team members to mature STV
- Coordinate STV projects
- Identify needed OSSEs, study areas, campaigns, and additional gaps
- Leverage existing data, missions, activities
- Build an STV community

STV Questions

How does Earth's changing surface structure inform us about climate change, natural hazards, ecosystem habitats, and water availability?

Solid Earth: How does Earth's surface structure respond to tectonic and climate forces and what are the implications for geologic hazards?

Vegetation Structure: How is Earth's vegetation responding to climate change and what are the feedbacks to the carbon cycle, hydrologic cycle, and ecosystems?

Cryosphere: How are the changing ice sheets and glaciers interacting with the global climate system and Earth's oceans?

Hydrology: How will water availability and flow change with climate and increasingly dynamic landscapes?

Coastal Geomorphology: How are coasts changing by natural and human influences and what are the impacts?

Applications: How does understanding changing topography and vegetation structure enable better hazard and resource management?

Science Breakouts

Solid Earth

- Tectonics/deposition/ erosion/climate coupled processes
- Earthquake, volcano and landslide assessment, response, mitigation and modeling
- Anthropogenic and natural change detection

Vegetation Structure

- Ecosystem structure and function
- Carbon accounting
- Biomass inventory, dynamics, monitoring
- Biodiversity, habitat structure and response to disturbance
- Forest resources
 management
- Wildfire, fuel, risk and post-fire recovery

Cryosphere

- Glacier and ice sheet mass gain and loss processes and impacts on sea level change
- Glacier and ice sheet ocean and atmosphere heat and mass exchanges
- Atmosphere-ice-ocean momentum, heat and mass exchange over the polar oceans
- Polar ocean circulation

Hydrology

- Lake and reservoir heights and shallow bathymetry
- Snow depth and melt impact on water resources
- Stream and river flow
- Flooding and inundation modeling
- Wetland processes and management

Coastal Geomorphology

- Storm surge and tsunami inundation hazards
- Shoreline erosion and sediment transport
- Benthic habitat and marine
 ecosystems
- Tidal interaction with mangroves and salt marshes
- Shallow water navigation and hazards

Applications

Technology Breakouts

Architecture

Lidar

Radar

Stereoimaging

OSSEs

2023 STV Study Leads

Lead Andrea Donnellan NASA/JPL/Caltech

Tech Co-Lead Craig Glennie Univ. Houston

Solid Earth Paul Lundgren NASA/JPL/Caltech

Vegetation Structure Sassan Saatchi NASA/JPL/Caltech

Cryosphere **Brooke Medley** NASA/GSFC

Hydrology Marc Simard NASA/JPL/Caltech

Coastal Geomorphology

Lori Magruder Texas, Austin

Pietro Milillo Univ. Houston

Radar Yunling Lou NASA/JPL/Caltech

Lidar Ben Smith Univ. Washington

Stereoimaging Mel Rodgers Univ. South Florida

Marco Lavalle NASA/JPL/Caltech

Platforms Matt Fladeland NASA Ames

Architecture Joe Green NASA/JPL/Caltech

Architecture

Mark Stephen NASA/GSFC

Remaining team members participate in one or more teams

STV Science and Applications Measurements

Measurement Challenge: Separating we get at ion from bare Earth topography

Elevation Models Relevant to STV

CHM = DSM - DTM, Flattening the topography

DSM = Digital Surface Model DTM = Digital Terrain Model CHM = Canopy Height Model

STV Data to Wisdom

Bare Earth Highlights Geophysical Processes

Full-feature

Bare Earth

Bare Earth Highlights Geophysical Processes

Full-feature

Bare Earth

Shallow Water Bathymetry is a Data Gap

STV Observables Coverage Maps Baseline Repeat

Surface Topography

Vegetation Structure

Shallow Water Bathymetry

Snow Depth

Baseline
 Surface Topography
 Vegetation Structure
 Shallow Water Bathymetry
 Snow Depth

Needs Ranked by Importance

Preliminary STV Measurement Needs

Parameter		Aspirational			Threshold		
		Median			Median		
		Need	Most Stringent		Need	Most Stringent	
		(rounded)	Need	Discipline	(rounded)	Need	Discipline
Coverage Area of Interest	%	90	95	С, Н	55	90	С
Latency	Days	5	0.5	SE	60	1	SE
Duration	Years	9	10	SE, C, A	3	3	SE, V, C, CP
Repeat Frequency	Months	0.1	0.03	SE, A	3	0.2	SE
Horizontal Resolution	m	1	1	SE, C, H, A	20	3	SE
Vertical Accuracy	m	0.2	0.03	SE, C, H	0.5	0.1	С
Vegetation Vertical Resolution	m	1	0.5	H, A	2	0.2	СР
Bathymetry Max Depth	m	25	30	C, CP	10	10	SE, C, CP
Geolocation Accuracy	m	1	1.0	SE, V, H, A	5	3	SE, V
Rate of Change Accuracy	cm/yr	5	1	SE, C, A	35	1	SE

A set of product needs for all science and applications could be met by an STV mission

Summary

- An orbital observing system could meet a set of STV science and applications needs serving all STV disciplines
- An architecture of multiple platforms and sensors on orbital and suborbital assets would address STV needs more thoroughly

- All science and applications disciplines need accurate repeat measurements to measure temporal changes
- A global baseline topographic map and overlying vegetation structure is needed followed by targeted repeated measurements
- STV Community Workshop: November 14-15, 2023, Pasadena, CA

Charge to Workshop

- Science
 - Compelling questions and objectives
 - Justification of science needs
 - Data fusion and separating vegetation and ground
 - Joint experiments
- Technology
 - Flow science needs to capabilities
 - Mature technologies as needed
 - Processing advances
- Architecture
 - Coverage, resolution, latency
 - Performance modeling
 - Airborne and spaceborne capabilities
 - Concept of operations

