
NASA's Surface Topography and Vegetation Study Mapping Earth's changing surface and overlying vegetation structure Measurement Needs

Craig Glennie Study Technology Co-Lead National Center for Airborne Laser Mapping University of Houston

Last updated 11/13/2023

Science to Measurement Traceability

Guidance from 2017 Decadal Survey

Surface Topography and Vegetation	 Improve understanding of measurement needs, through modeling and mission concept studies, to define which can be addressed with state-of-the-art technology and which require further development. Identify which measurement needs can be obtained through suborbital means and which require a space-based component. Identify those ready to compete in Venture-class opportunities. Identify any proposed components that could be ready for Earth System Explorer opportunity, for consideration by Midterm Assessment. Consider appropriate split between global observations from space and potentially less expensive and higher resolution airborne measurements. 	e
	 Look into obtaining commercial data to meet needs; define a pathway to ensure any identified spaceborne component matures toward flight in the following decade. 	

Guidance from 2017 Decadal Survey

Science and Applications Value. Characterizing surface topography with contiguous measurements at 5 m spatial resolution and 0.1 m vertical resolution will allow for detailed understanding of geologic structure and geomorphological processes, which in turn can provide new insights into surface water flow, the implications of sea-level rise and storm surge in coastal areas, the depth of off-shore water in near coastal areas, and more. In addition, assuming a lidar-based system, the implications for understanding ecosystem structure, and the associated cycling of carbon will be significant, as described earlier under the Terrestrial Ecosystem Structure Targeted Observable.

Observational Approach, Technology Readiness, and Risk. Space-based lidar offers the possibility of simultaneously mapping at high spatial resolution the vegetation structure and underlying "bare earth" topography across the globe. Such data would revolutionize our capability to understand how Earth's surface works, and greatly enhance our ability to predict hazards and anticipate the effects of surface change. Although increased topographic resolution from 30 m (SRTM) to 12 m (TanDEM-X) using synthetic aperture radar has been accomplished, much higher resolution is needed. Deriving vegetation height from radar involves much analysis. Optical methods, such as that provided by DigitalGlobe, have increased the resolution to 2-5 m, but such methods track canopy heights, not the ground surface in vegetated environments.

STV Incubation Study (Table 3.2)

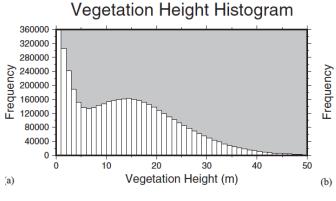
PARAMETER		ASPIRATIONAL			THRESHOLD		
		Median Need (rounded)	Most Need	Stringent Discipline	Median Need (rounded)	Mos Need	st Stringent Discipline
Coverage Area of Interest	%	90	95	C, H	55	90	C
Latency	Days	5	0.5	SE	60	1	SE
Duration	Years	9	10	SE, C, A	3	3	SE, V, C, CP
Repeat Frequency	Months	0.1	0.03	SE, A	3	0.2	SE
Horizontal Resolution	m	1	1	SE, C, H, A	20	3	SE
Vertical Accuracy	m	0.2	0.03	SE, C, H	0.5	0.1	C
Vegetation Vertical Resolution	m	1	0.5	H, A	2	0.2	СР
Bathymetry Max Depth	m	25	30	C, CP	10	10	SE, C, CP
Geolocation Accuracy	m	1	1.0	SE, V, H, A	5	3	SE, V
Rate of Change Accuracy	cm/y	5	1	SE, C, A	35	1	SE

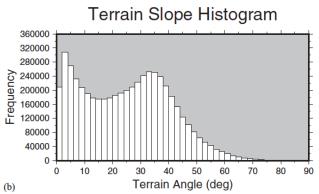
Example: Sitka Alaska

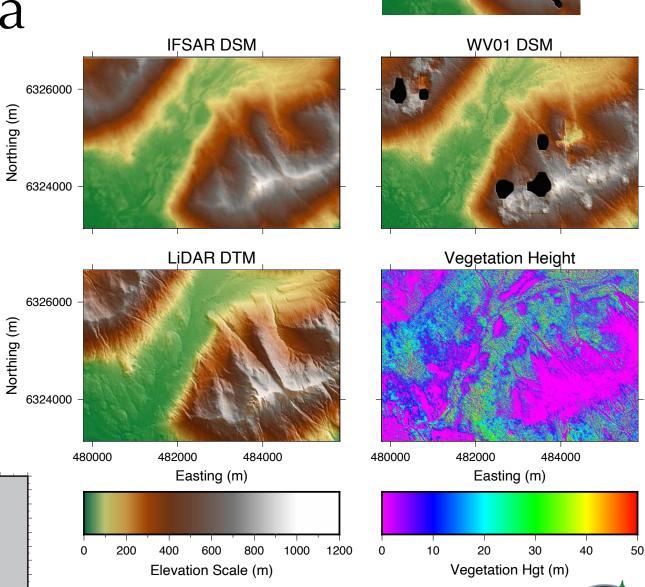
Airborne Lidar

- May 2, 2016
- Helicopter-based. Nominal 25 pts/m²

IFSAR DEM

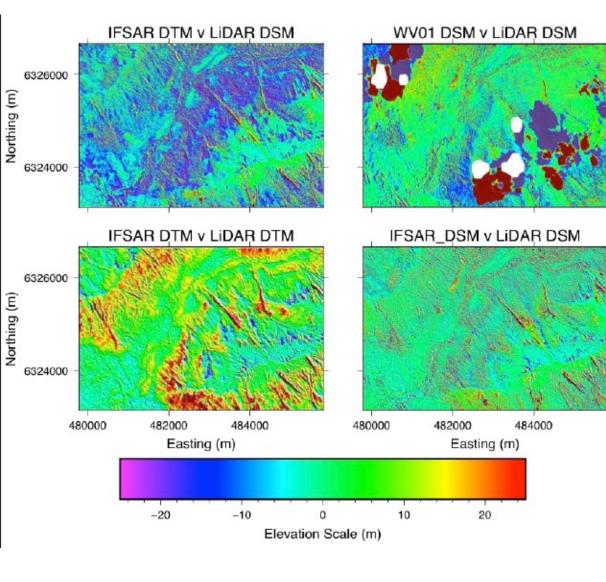

- 2014 Airborne IFSAR (Fugro)
- Dual-band (X and P) GeoSAR Platform
- 5 m grid postings (DSM and DTM)

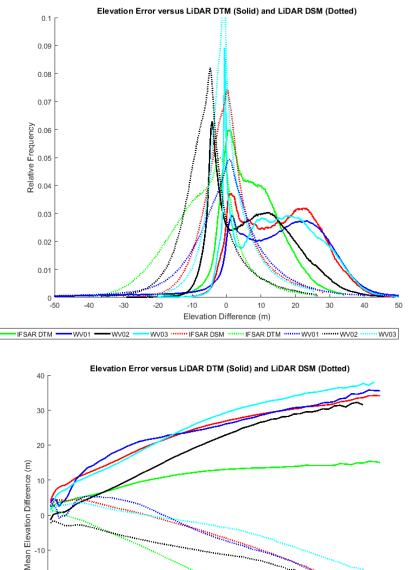

ArcticDEM


- Worldview August 19, 2015
- SETSM 2 m grid postings
- Vertical registration with 72 ICESat GCPs

Study Area

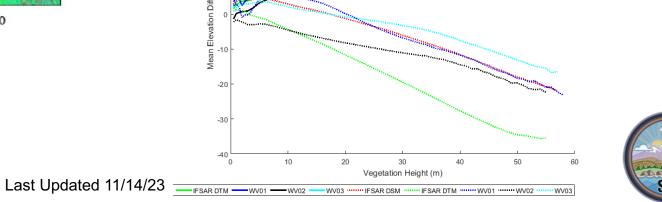
• Approximately 25 km²





Glennie, C. (2018). Arctic high-resolution elevation models: Accuracy in sloped and vegetated terrain. *Journal of Surveying Engineering*, *144*(1), 06017003.

Last Updated 11/13/23



-1(

-20

-30

Results Continued...

Table 3: Statistics of DEM Errors versus LiDAR DSM and DTM reference surfaces. Outliers were considered to be > 3σ (three standard deviations) from the mean, and have been excluded from the calculation of statistics.

LIDAR DTM IFSAR_DSM 15.26 11.02 48.58 -18.00 6009 5236387 IFSAR_DTM 7.34 8.22 33.89 -18.82 52347 5190049 WV01 15.75 30.47 192.05 -164.46 183094 4912844 WV02 8.07 11.19 45.41 -29.29 18569 3766238 WV03 14.71 11.60 49.67 -20.26 3223 3281751 LIDAR DSM IFSAR_DSM 0.65 7.95 27.95 -25.75 80446 5161954 WV01 10.2 29.39 174.43 -175.57 185314 4910675 WV02 -5.35 8.26 26.22 -36.47 50378 3734441			Mean	Sigma	Max	Min	Outliers	Total
WV01 15.75 30.47 192.05 -164.46 183094 4912844 WV02 8.07 11.19 45.41 -29.29 18569 3766238 WV03 14.71 11.60 49.67 -20.26 3223 3281751 LIDAR DSM IFSAR_DSM 0.65 7.95 27.95 -25.75 80446 5161954 WV01 1.02 29.39 174.43 -175.57 185314 4910675	LIDAR DTM	IFSAR_DSM	15.26	11.02	48.58	-18.00	6009	5236387
WV02 8.07 11.19 45.41 -29.29 18569 3766238 WV03 14.71 11.60 49.67 -20.26 3223 3281751 LIDAR DSM IFSAR_DSM 0.65 7.95 27.95 -25.75 80446 5161954 IFSAR_DTM -6.91 10.10 25.72 -39.03 50216 5192184 WV01 1.02 29.39 174.43 -175.57 185314 4910675		IFSAR_DTM	7.34	8.22	33.89	-18.82	52347	5190049
WV03 14.71 11.60 49.67 -20.26 3223 3281751 LIDAR DSM IFSAR_DSM 0.65 7.95 27.95 -25.75 80446 5161954 IFSAR_DTM -6.91 10.10 25.72 -39.03 50216 5192184 WV01 1.02 29.39 174.43 -175.57 185314 4910675		WV01	15.75	30.47	192.05	-164.46	183094	4912844
LIDAR DSM IFSAR_DSM 0.65 7.95 27.95 -25.75 80446 5161954 IFSAR_DTM -6.91 10.10 25.72 -39.03 50216 5192184 WV01 1.02 29.39 174.43 -175.57 185314 4910675		WV02	8.07	11.19	45.41	-29.29	18569	3766238
IFSAR_DTM -6.91 10.10 25.72 -39.03 50216 5192184 WV01 1.02 29.39 174.43 -175.57 185314 4910675		WV03	14.71	11.60	49.67	-20.26	3223	3281751
WV01 1.02 29.39 174.43 -175.57 185314 4910675	LIDAR DSM	IFSAR_DSM	0.65	7.95	27.95	-25.75	80446	5161954
		IFSAR_DTM	-6.91	10.10	25.72	-39.03	50216	5192184
WV02 -5.35 8.26 26.22 -36.47 50378 3734441		WV01	1.02	29.39	174.43	-175.57	185314	4910675
		WV02	-5.35	8.26	26.22	-36.47	50378	3734441
WV03 0.48 7.02 25.26 -23.49 62354 3222639		WV03	0.48	7.02	25.26	-23.49	62354	3222639

What Are We Missing?

Stereo Imaging

- Top Surface Model Only
- Very Little Penetration in Vegetated Areas
- Correlation Process Rounds Edges

IFSAR

- DSM Shows Some Penetration
- DTM Above Actual Ground Level
- Are Offsets Consistent or Able to Be Modeled?

Lidar

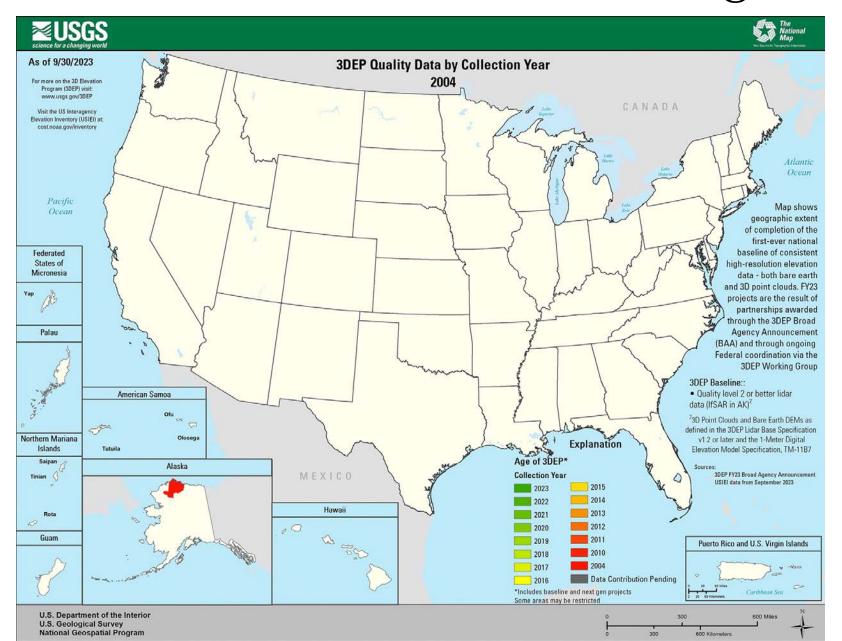
- Good Vegetation Penetration and Ground Definition
- Automated Classification Still Challenging
- Global Acquisition Possible?

What Are the Needs?

Type of Observing System?

- Likely Requires Combination of Technologies
- Which Ones?

Fusion Algorithms


- Take Advantage of Each Systems Strengths
- Automated Separation of Ground and Vegetation

Airborne Campaigns

- Collection Using all Possible Technologies
- Areas of Interest?
- Leveraging Existing Data Sources?

USGS 3DEP Lidar Coverage

