National Academies DS perspective ----

A perspective from a member of the NAS Decadal Survey and the Decadal Midterm Review Committees (*and a committed topoholic*)

William E. Dietrich UC Berkeley

November 14, 2023

Brief summary of the Decadal Survey recommendations

Status of the execution of the Decadal Survey by NASA

The Midterm Committee Tasks

STV incubation program comments

Thriving on Our Changing Planet

A Decadal Strategy for Earth Observation from Space

#EarthDecadal

The National Academies of SCIENCES

MEDICINE

ENGINEERING

Public presentation by Waleed Abdalati presented to the Midterm Committee Sept. 28, 2023

COMMITTEE ON THE DECADAL SURVEY FOR EARTH SCIENCE AND APPLICATIONS FROM SPACE

WALEED ABDALATI, University of Colorado, Boulder, Co-Chair WILLIAM B. GAIL, Global Weather Corporation, Co-Chair ANTONIO J. BUSALACCHI, JR., NAE, University Corporation for Atmospheric Research, Co-Chair₂ STEVEN J. BATTEL, NAE, Battel Engineering, Inc. STACEY W. BOLAND, Jet Propulsion Laboratory ROBERT D. BRAUN, NAE, University of Colorado SHUYI S. CHEN, University of Washington WILLIAM E. DIETRICH, NAS, University of California, Berkeley SCOTT C. DONEY, University of Virginia CHRISTOPHER B. FIELD, NAS, Stanford University HELEN A. FRICKER, Scripps Institution of Oceanography SARAH T. GILLE, Scripps Institution of Oceanography DENNIS L. HARTMANN, NAS, University of Washington DANIEL J. JACOB, Harvard University ANTHONY C. JANETOS, Boston University EVERETTE JOSEPH, University of Albany, State University of New York MOLLY K. MACAULEY, 4 Resources for the Future JOYCE E. PENNER, University of Michigan SOROOSH SOROOSHIAN, NAE, University of California, Irvine GRAEME L. STEPHENS, NAE, Jet Propulsion Laboratory, California Institute of Technology BYRON D. TAPLEY, NAE, University of Texas, Austin W. STANLEY WILSON, National Oceanic and Atmospheric Administration (retired)

What We Were Asked to Do

OVERARCHING TASKS

- Assess progress from 2007
- Develop a prioritized list of toplevel science and application objectives for 2017-2027
- Identify gaps and opportunities in the programs of record at NASA, NOAA, and USGS
- Recommend approaches to facilitate the development of a robust, resilient, and appropriately balanced U.S. program of Earth observations from space

GENERAL & AGENCY-SPECIFIC TASKS

- Cross-Agency
 - Enabling activities
 - Partnerships & synergies
- NASA
 - Program balance and scope
 - Ventures flight element
 - Decision principles and measurement continuity
- NOAA and USGS
 - Non-traditional observation sources
 - On-ramp of scientific advances
 - Research-to-operations
 - Technology replacement/infusion

Quick Summary: Recommendations

"Thriving on our Changing Planet" **SCIENCE & APPLICATIONS**

Address **35 key science/applications questions,** from among hundreds suggested. Those with objectives prioritized as most important fell into **six categories**:

- Coupling of the Water and Energy Cycles
- Ecosystem Change
- Extending & Improving Weather and Air Quality Forecasts
- Sea Level Rise
- Reducing Climate Uncertainty & Informing Societal Response
- Surface Dynamics, Geological Hazards and Disasters

3

OBSERVATIONS

Augment the **Program of Record** with **eight priority observables**:

Five that are specified to be implemented:

2

- Aerosols
- Clouds, Convection, & Precipitation
- Mass Change
- Surface Biology & Geology
- Surface Deformation & Change
- Three others to be selected competitively from among seven candidates
- Structure new NASA mission program elements to accomplish this
- Methods for new NASA capabilities to be leveraged by NOAA and USGS

4 PROGRAMMATICS

- CROSS-AGENCY
- NASA
 - Flight
 - Technology
 - Applications
 - NOAA
- USGS

Recommended NASA Flight Program Elements

Program of Record.

The series of existing or previously planned observations, which should be completed as planned.

Execution of the ESAS 2017 recommendation requires that the total cost to NASA of the Program of Record *flight missions from FY18-FY27 be capped at \$3.6B.*

- Designated. A <u>new</u> program element for ESAS-designated cost-capped medium- and large-size missions to address observables essential to the overall program and that are outside the scope of other opportunities in many cases. Can be competed, at NASA discretion.
- Earth System Explorer. A <u>new</u> program element involving competitive opportunities for medium-size instruments and missions serving specified ESAS-priority observations.
 Promotes competition among priorities.
- Incubation. A <u>new</u> program element, focused on investment for priority observation opportunities needing advancement prior to cost-effective implementation, including an Innovation Fund to respond to emerging needs. Investment in innovation for the future.
- Venture. Earth Venture program element, as recommended in ESAS 2007 with the addition of a <u>new</u> Venture-Continuity component to provide *opportunity for low-cost sustained observations*.

Recommended NASA Priorities: Designated

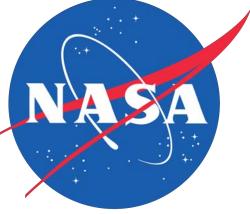
TARGETED OBSERVABLE	SCIENCE/APPLICATIONS SUMMARY	CANDIDATE MEASUREMENT APPROACH	Designated	Explorer	Incubation
Aerosols	Aerosol properties, aerosol vertical profiles, and cloud properties to understand their direct and indirect effects on climate and air quality	Backscatter lidar and multi- channel/multi- angle/polarization imaging radiometer flown together on the same platform	x		
Clouds, Convection, & Precipitation	hydrological cycle and understanding	Radar(s), with multi-frequency passive microwave and sub-mm radiometer	x		
Mass Change	Large-scale Earth dynamics measured by the changing mass distribution within and between the Earth's atmosphere, oceans, ground water, and ice sheets	Spacecraft ranging measurement of gravity anomaly	x		
Surface Biology & Geology	Earth surface geology and biology, ground/water temperature, snow reflectivity, active geologic processes, vegetation traits and algal biomass	Hyperspectral imagery in the visible and shortwave infrared, multi- or hyperspectral imagery in the thermal IR	x		
Surface Deformation & Change	Earth surface dynamics from earthquakes and landslides to ice sheets and permafrost	Interferometric Synthetic Aperture Radar (InSAR) with ionospheric correction	x		

Recommended NASA Priorities: Explorer

TARGETED OBSERVABLE	SCIENCE/APPLICATIONS SUMMARY	CANDIDATE MEASUREMENT APPROACH	Designated	Explorer	Incubation
Greenhouse Gases	CO ₂ and methane fluxes and trends, global and regional with quantification of point sources and identification of source types	Multispectral short wave IR and thermal IR sounders; or lidar**		x	
Ice Elevation	Global ice characterization including elevation change of land ice to assess sea level contributions and freeboard height of sea ice to assess sea ice/ocean/atmosphere interaction	Lidar**		x	
Ocean Surface Winds & Currents	Coincident high-accuracy currents and vector winds to assess air-sea momentum exchange and to infer upwelling, upper ocean mixing, and sea- ice drift.	Radar scatterometer		x	
Ozone & Trace Gases	Vertical profiles of ozone and trace gases (including water vapor, CO, NO ₂ , methane, and N ₂ O) globally and with high spatial resolution	UV/IR/microwave limb/nadir sounding and UV/IR solar/stellar occultation		x	
	Snow depth and snow water equivalent including high spatial resolution in mountain areas	Radar (Ka/Ku band) altimeter; or lidar**		x	
Terrestrial Ecosystem Structure	3D structure of terrestrial ecosystem including forest canopy and above ground biomass and changes in above ground carbon stock from processes such as deforestation & forest degradation	Lidar**		x	
Atmospheric Winds	3D winds in troposphere/PBL for transport of pollutants/carbon/aerosol and water vapor, wind energy, cloud dynamics and convection, and large- scale circulation	Active sensing (lidar, radar, scatterometer); passive imagery or radiometry-based atmos. motion vectors (AMVs) tracking; or lidar**		x	x

Recommended NASA Priorities: Incubation/Other

TARGETED OBSERVABLE	SCIENCE/APPLICATIONS SUMMARY		CANDIDATE MEASUREMENT APPROACH	Designated	Explorer	Incubation	
Atmospheric Winds	3D winds in troposphere/PBL for transport of pollutants/carbon/aerosol and water vapor, wind energy, cloud dynamics and convection, and large- scale circulation		Active sensing (lidar, radar, scatterometer); passive imagery or radiometry-based atmos. motion vectors (AMVs) tracking; or lidar**		x	x	
Planetary Boundary Layer	Diurnal 3D PBL thermodynamic properties and 2D PBL structure to understand the impact of PBL processes on weather and AQ through high vertical and temporal profiling of PBL temperature, moisture and heights.		Microwave, hyperspectral IR sounder(s) (e.g., in geo or small sat constellation), GPS radio occultation for diurnal PBL temperature and humidity and heights; water vapor profiling DIAL lidar; and lidar** for PBL height			x	
Surface Topography & Vegetation	High-resolution global topography including bare surface land topography ice topography, vegetation structure, and shallow water bathymetry		Radar; or lidar**			x	
** Could potentially be addressed by a multi-function lidar designed to address two or more of the Targeted Observables							
Other ESAS 2017 Targeted Observables, not Allocated to a Flight Program Element							
Aquatic Biogeochemistry Radia		Radiano	nce Intercalibration				
Magnetic Field Changes Se			ea Surface Salinity				
Ocean Ecosystem Structure Soil		Soil Mo	oil Moisture				

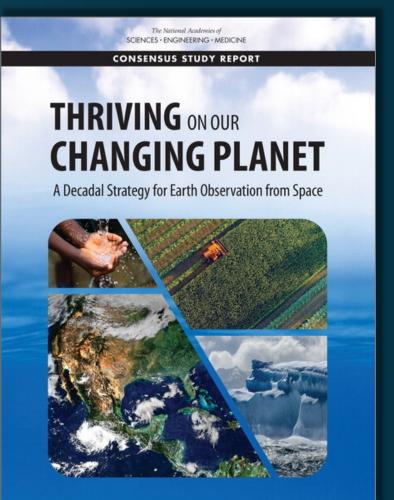

Innovation

- Tension between ensuring the achievement of critical objectives, and innovation in the program – all within a short decade
- Innovation achieved programmatically through the *Earth System Explorer* element
 - Allows pressure of competition to promote innovative approaches to achieving science objectives
- Infusion of resources into *Incubation* element for developing needed capabilities for beyond the next decade
- Opportunity to innovate in *Earth Venture*, in particular *Venture*-*Continuity*

The recommended sustained Incubation program will make possible development of capabilities that are difficult to achieve through one-off competitive calls, something long sought by managers of Earth observation programs at NASA, NOAA, and the USGS.

Programmatics - NASA

- **Rec 4.6** Apply **decision rules** (included) to maintain programmatic balance (programmatic balance was a high priority)
- Rec 4.7 Small scope changes to applications & technology programs



- **Rec 4.8** Reevaluate **Ventures structure** at mid-term
- **Rec 3.3** Avoiding cost growth is critical to program's success (capability and reliability are where the flexibility must be found)

For each **Targeted Observable in the Incubation program element**, a *coordinated program* of strategic investments in technology, research, modeling, or data system development would be developed by NASA toward maturing the overall measurement concepts.

NASA Earth Science at the Decadal Midterm: Progress and Opportunity NASA Earth Science Division's Decadal Strategy:

- Meet our Program of Record commitments to advance flight, research, applications and technology
- Implement next-generation capability to meet the Designated Observables and Explorers
- Position NASA Earth Science to maximize science and societal benefit

Public presentation to Midterm Committee by NASA Earth Science Division Director Karen St. Germain on September 28, 2023

Decadal Survey Incubation Program: Accomplishments

Maturation of instrument technology, measurements, and mission concepts to address high-priority Planetary Boundary Layer (PBL) and Surface Topography and Vegetation (STV) science (for 2027-2037)

- ROSES-19 Solicitation resulted in PBL and STV study teams and foundational study papers
- ROSES-21 Solicitation 35 selections awarded in FY22
 - science; technology development; OSSE's
 - PBL/STV Incubation Team (IT) science/technology co-leads
- DSI leverages relevant awards in IIP, AIST, ACT, and FINESST
- PBL field campaign CPEX-CV (Cabo Verde) Sept 2022
- STV field campaign AfriSAR-2 (Ghana, Nigeria, Gabon, Sao Tome, DRC, Tanzania, and Mozambique) Q4 2023 – Q2 2024
- Upcoming activities
 - PBL Community Meeting, Washington, DC, Oct. 2-3, 2023
 - STV Community Meeting, Pasadena, CA, Nov. 14-15, 2023
 - The next DSI solicitation is expected in Q3 FY24

https://esto.nasa.gov/incubation/

DSI-21 Selection Distribution	PBL	STV
Science	12	13
OSSE	1	2
Technology	3	3
IT Co-Lead	1	-
Totals	17	18

EARTH SYSTEM OBSERVATORY

INTERCONNECTED CORE MISSIONS

SURFACE BIOLOGY AND GEOLOGY

Earth Surface & Ecosystems

SURFACE DEFORMATION AND CHANGE

Earth Surface Dynamics Met by NISAR launch in 2024 **\$3.5B** total investment for first four ESO missions

ССР

AOS-Storm and AOS-Sky

CLOUDS, CONVECTION AND PRECIPITATION

Water and Energy in the Atmosphere

AEROSOLS

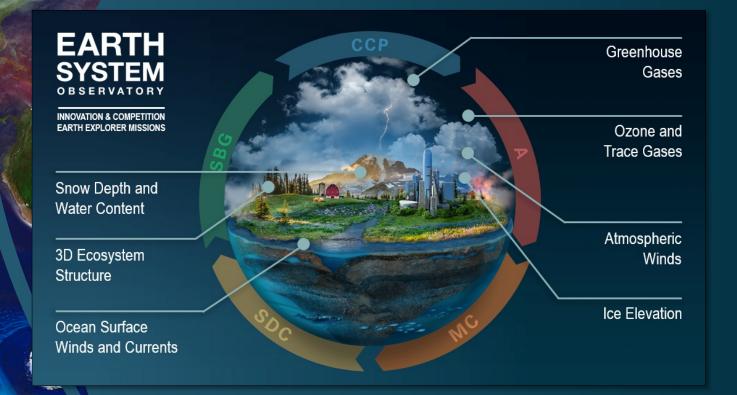
Particles in the Atmosphere

MASS CHANGE

Large-scale Mass Redistribution

Designated Observables now in Mission Formulation

ESO Core Missions

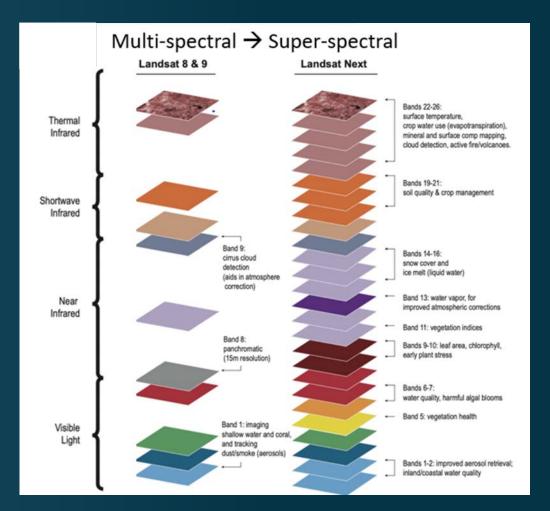

- Successfully completed Mission Concept Reviews Summer 2022
- Missions passed KDP-A and now in Formulation
- ESO Independent Review Board, July-October 2022
 - IRB report and NASA response posted at nasa.gov/reports
- AOS-Storm and AOS-Sky have Phase A trade studies under way
- SDC will remain in extended study phase to take advantage of NISAR mission

	AOS-Storm	SBG	GRACE-C	SDC
	AOS-Sky	MCR: June 2022	MCR: Jun 2022	Remaining in
	MCR: May 2022	KDP-A: Nov 2022	KDP-B: Sept 2023	Extended Study
	KPD-A: Jan 2023			Phase
MCR – Mission Concept Review		KDP – Key Decision Point	S	

AOS- Atmosphere Observing System SBG- Surface Biology and Geology GRACE-D = Mass Change SDC- Surface Deformation and Change

Earth System Explorers (ESE)

- Final Announcement of Opportunity (AO) released on May 2, 2023
- AO closed August 2, 2023
- Step 1 selection anticipated Q3 FY24
- PI-Managed Mission Cost (PIMMC) cap of \$310M (FY24 \$)
- NASA will provide launch vehicle services
- Two-step selection process
- New Earth System Explorers Program Office established at GSFC; SRR/SDR completed in March 2023 and KDP-I in June 2023

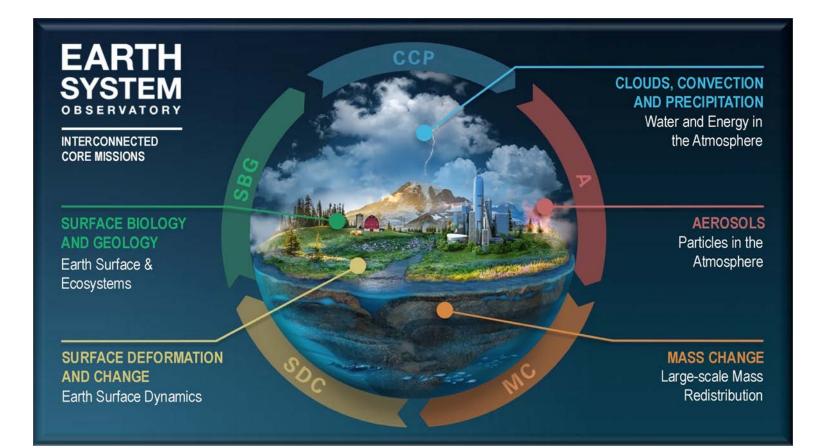

Landsat Next

Landsat Next mission is a constellation of three identical satellites, approximately equally distributed in orbit

- \leq 9 day global land revisit frequency
- 26 spectral bands (21 VSWIR; 5 TIR)
- Target Launch Readiness Date: November 2030

Status and next steps:

- Held KDP-A Program Management Council on Nov. 2
- Landsat Instrument Suite proposals currently under evaluation with award planned in spring of 2024.


Landsat Next will provide more than twice as many spectral bands, with resolution improved by a factor of 2, and with the repeat coverage of Landsats 8 and 9, *combined*

Earth System Observatory (ESO) Independent Review Board (IRB) Final Report

https://www.nasa.gov/wpcontent/uploads/2022/11/eso_irb_documents.pdf

Summary Presentation to ESAS 2017 Midterm review Committee (Subset of the Final IRB Report)

September 27, 2023

Designated

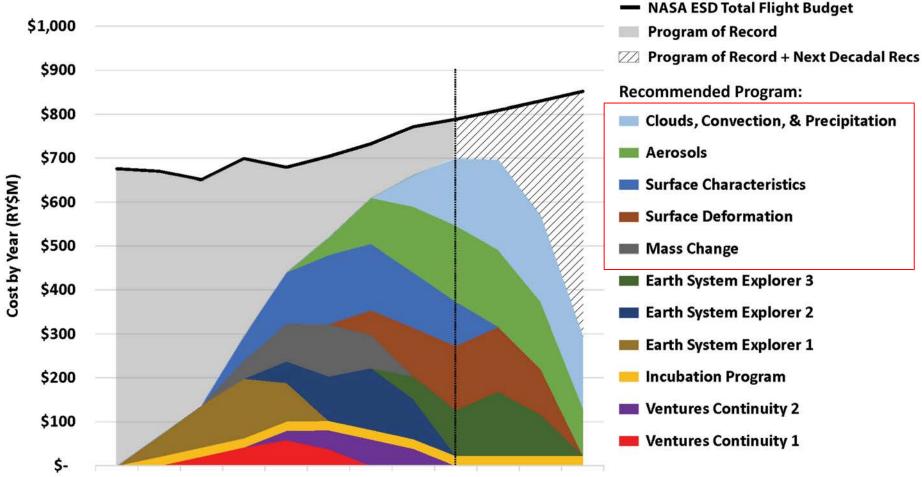
Two <\$800 million FY2018 One <\$650 million One <\$500 million One <\$300 million

Explorer

Three <\$350 million

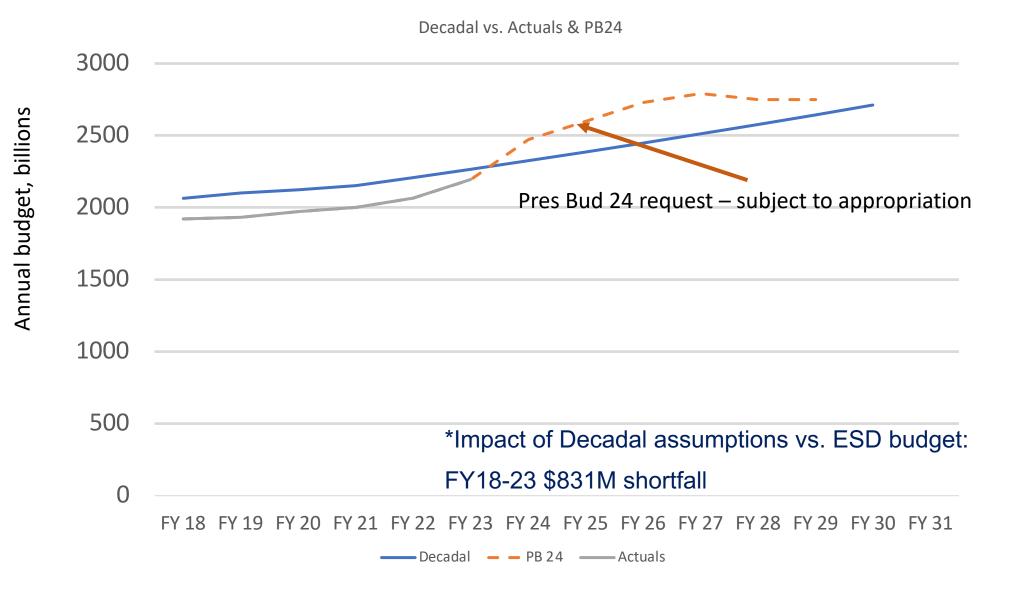
Venture- Continuity Two <\$150 million

Incubation


\$20 million/year

All costs exceeded

Missions delayed


Mission numbers reduced

NASA Budget Compliance

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

- Liens from last decade into this one are substantial
- Very little flexibility to absorb funding challenges until mid decade
- Committee sought to keep liens lower on next decade
 - Allows more flexibility for next decadal survey
 - Some carry over of programs into subsequent decade is required

Accumulating Budget Challenges: Reduced Buying Power

Factor	Impact (approx.)
DS Budget growth assumptions	\$1.74B
DS Landsat Next Budget assumptions	\$450M
COVID-19	\$300M
Tech challenges	\$250M
Cost estimate optimism & record inflation	\$500M
Total impact	\$3.2B

Melting on Humboldt Glacier NASA Earth Observatory images by <u>Wanmei Liang</u>, using Landsat data from the <u>U.S. Geological Survey</u>.

Public presentation to Midterm Committee by NASA Earth Science Division Director Karen St. Germain on September 28, 2023²³

Midterm Review of the 2017 Decadal Survey

7 Tasks assigned to committee, including...

Assess the degree to which the programs of NASA, NOAA and the USGS address the strategies, goals, and priorities outlined in the 2017 decadal survey...

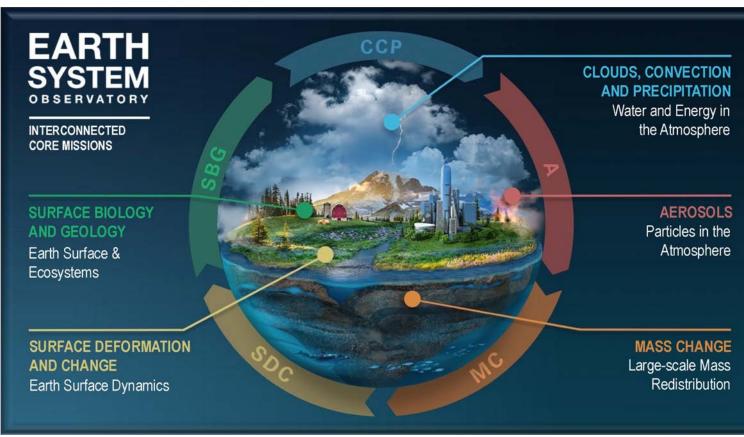
Recommend actions that could be taken to optimize the full breadth of NASA's Earth science programs during the remaining decadal interval.

Recommend any actions that NASA, NOAA and the USGS should undertake to prepare for the next decadal survey, including information, observables, pathfinders, or technology. Co-Chairs Christian D. Kummerow and Anna M. Michalak

Members Stacey W. Boland Francisco P. Chavez William E. Dietrich Deanna Hence Daniel J. Jacob Dennis P. Lettenmaier Kathleen (Kass) O'Neill Green Lesley E. Ott David T. Sandwell Susan L. Ustin Isabella Velicogna Xubin Zeng

https://drive.google.com/drive/folders/1ttHvpxP5wzq_QL8-1dn77ouz-weuopgU?usp=drive_link

https://vimeo.com/event/3731315


Staff Officers Arthur A. Charo, Dwayne A. Day and Tarini Konchady

General issues mentioned in public presentations to the Midterm Review Committee

1. Budget

- 2. Continuity (MC+ Landsat Next)
- **3. Innovation** (Incubation, Explorer, Venture)
- 4. International partners
- **5.** Commercial resources

As already mentioned, the budget was stressed by unanticipated costs. This is partly responsible for the delay in launch schedule and increased mission costs:

Aersols (AOS Sky and Storm) + Clouds/Convection/Precip

Mass Change Grace-C (continuity)

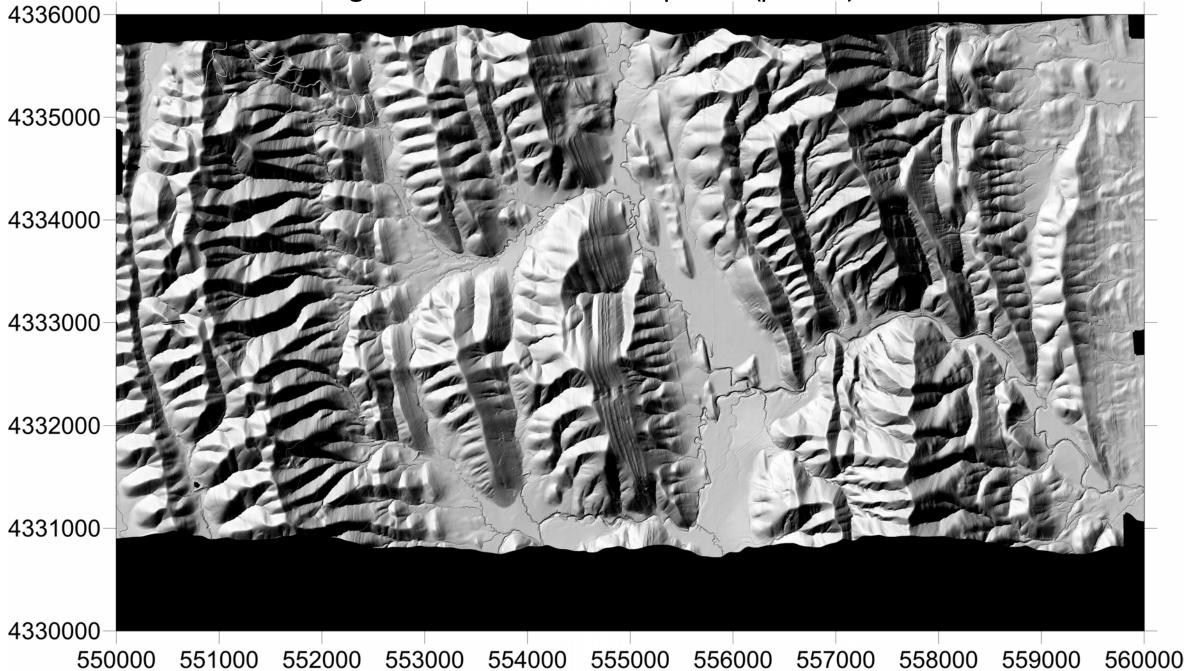
Surface Bio and Geo (TIR and VSWIR)

2028 and 20302 Billion2028>500 million2027 and 2028900 million

Surface Deformation and Change. NISAR launch 2024 (was 2021) ; Five finalists down select 2025

Four Explorer mission to Step 1; selection anticipated Q3 FY24 to eventual down seleted to 2 launched missions Launch 2929 and 2031

STV considerations for the next Decadal Survey (and our Midterm Review)


- 1. How will the pace (and continuance) of the Explorer mission launches impact arriving at an equivalence of an STV "Designated Observable (DO)"?
- 2. Cost: "flagship"?

Is there a possibility that a successful STV DO could become a "continuity" mission? Can one mission meet the goals of your five self-defined STV fields?

3. The DS emphasized international partnerships to reduce DO mission costs. Are there *specific* collaborations/coordination with other space agencies that can be identified?

4. As always, and discussed in the STV 2021 report, what is anticipated to be useful capabilities in the commercial sector?

Could we get data like this for the planet (*please*)?

