STV Panel Discussion: Separating Vegetation from Ground

Application Expertise
LIDAR
SAR
Stereo Imaging
LIDAR
SAR

LIDAR Example

Left: When scientists process GEDI's data, the resulting measurements reveal the vertical structure of the forest. This GEDI image is of a South Carolina woodland where darker green shows where the leaves and branches are denser, while the lighter areas show where the canopy is less dense (image credit: Joshua Stevens / NASA Earth Observatory, Bryan Blair / NASA Goddard Space Flight Center, Michelle Hofton and Ralph Dubayah / University of Maryland)

(image credit: NASA Earth Observatory, images by Joshua Stevens, using GEDI data courtesy of Michelle Hofton/University of Maryland. Story by Jessica Merzdorf, NASA GSFC, with Mike Carlowicz) ¹²¹

Data examples

Height (m) 250-200-150 -100-50-Safe Harbor Dam 0-77.0 -76.9 -76.5 -76.3 -76.8 -76.6 -76.4 -76.7 Longitude

(image credit: NASA Earth Observatory)

https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/iss-gedi

Interferometric Synthetic Aperture Radar

Overview

Sensor	Key Advantages	Key Disadvantages
Lidar	 High vertical accuracy Detection of ground through vegetation Vegetation structure Day and night operation 	 Coverage Cloud cover High power Limited detection of ground through very dense vegetation
Radar	 Coverage Day and night operation Operates through clouds 	 Complex to infer vegetation structure and underlying topography Changing snow, firn and ice dielectric properties makes height measurements very challenging High power
Stereophotogrammetry	 High spatial resolution Low power High maturity High reliability 	 Day only operation Cloud cover Limited detection of ground through dense vegetation

TABLE 5-1. Key advantages and	disadvantages for lidar, rada	and stereo technologies.
-------------------------------	-------------------------------	--------------------------

Discussion Topics

Technology Strengths and Weakness

Spatial Resolution and sampling Height Resolution and sampling Success of penetrating Vegetation Cross-Track Field of View Observational Conditions Automatability of achieve separation Power vs Range

(Trees)

(Clouds / Haze / Night)

Compatibility with Other Science Themes

LIDAR: Bathymetric favors 532nm vs Vegetation favors 1064nm

Science Applications and Modeling

Multimodality and Data Fusion Dense Imaging anchored by Sparse LIDAR / InSAR

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Slides for panel discussion Sassan Saatchi

Separating Vegetation from Ground

Surface topography and vegetation structure are poorly correlated and must be treated as two independent biophysical variables to be retrieved

Separating Vegetation from Ground

Can measurements from existing InSAR image technology and lidar point samples solve the problem of separating vegetation from ground globally?

How can data fusion and AI help overcome the complexity of retrieval STV variables from multi-sensor and platform measurements?

To what extent solutions to mapping the onetime state of the system can be combined with solutions address system dynamics/change?

Zhangjiajie National Forest Park, Chi

Separating Vegetation from Ground

Separating Vegetation From Ground

Challenges Using Lidar

Keith Krause

Separating Vegetation From Ground With Lidar

- In order to generate accurate high spatial resolution terrain models beneath vegetation, improvements may be needed:
 - Instrument and collection specifications
 - Algorithms for ground detection

Penetration through a thick canopy terpodation io artestain models Here an approx. 5 m x 5m gap exists without any ground returns.

Visual Comparisons of Ground Products From Existing Lidar Instruments: Harvard Forest, MA

- LVIS: L2, lowest detected mode
- GEDI: L2A, power and coverage beams, lowest mode
- ICESat-2: ATL08, strong beams, best fit terrain
- GEDI and ICESat-2 have both leaf-on and leaf-off tracks
- Quality flags have NOT been used to filter bad points
- The background is the 2022 NEON AOP DTM

380

Elevation [m]

