NASA's Surface Topography and Vegetation Study

Stereoimaging

Name Mel Rogers USF (Alternate: Curtis Padgett JPL)

© 2023. All rights reserved.

Stereoimaging Current Capability Overview—Earth Observing

Name	Status	Owner/Agency	Launch [note 1]
Disaster Monitoring Constellation ^[41]	Active	DMC International Imaging	2009
EROS A and B	Active	ImageSat International	2000
Flock-1 Constellation	Active	<u>Planet</u>	2014
GeoEye-1	Active	DigitalGlobe (Maxar)	2008
GRUS-1A to E	Active	Axelspace ^[42]	2018
<u>illin-1</u> (Optical	Active	Chang Guang Satellite Technology	2015
NovaSAR-S1 ^[42]	Active	UK Space Agency and <u>Surrey Satellite</u> Technology	2018
PlanetScope-2 ^[43]	Active	<u>Planet</u>	2016
SkySat-1 to 3	Active	Planet	2013
SkySat-4 to 7	Active	Planet	2016
SkySat-8 to 13	Active	Planet	2017
SPOT 6 and 7	Active	EADS Astrium Azercosmos, and CNES	2012
SuperView-1 ^[44]	Active	Beijing Space View Technology	2018
TripleSat (UK-DMC 3) ^[45] [46]	Active	DMC International Imaging	2015
Vivid-i 1 to 5 ^[47]	Active	Earth-i ^[48]	2018
WorldView-1	Active	DigitalGlobe (Maxar)	2007
WorldView-2 and <u>3</u>	Active	DigitalGlobe (Maxar)	2009
Pleiades Neo 3	Active	Airbus Defence and Space	2021
Pleiades Neo 4	Active	Airbus Defence and Space	2021

Capabilities:

- Cover most of the globe
- GSD from +5 to 0.3 m
- Panchromatic to Hyperspectral

Stereoimaging Current Capability Overview—Earth Observing Govt

Name	Status	Agency	Launch [note 1]
Landsat-7	Active	NASA and USGS	1999
Landsat-8	Active	NASA and USGS	2013
Landsat-9	Active	NASA and USGS	2021
Sentinel-1A and B	Active	ESA	2014
Sentinel-2A, B, and C	Active	ESA	2015
Sentinel-3A and B	Active	ESA	2016
Terra	Active	NASA	1999
Sentinel-5 Precursor (S5P)	Active	ESA	2017

Capabilities:

- Cover most of the globe
- GSD from +5 to 0.3 m
- Panchromatic to Hyperspectral

Wikipedia

Stereoimaging Emerging Capability

TRL6 by 2028 (airborne and spaceborne)

QUAKES-I: Down looking SFM sensor (GSD 0.6 m @ 40000 ft), 8 camera, framed sensor (4 forward looking 4 aft looking, creating 2 swaths ~ $12 \times 3 \text{ km}$); being adapted to fly on lower/slower craft for better than 20 cm GSD

CO3D-1 to 4: CNES—planned resolution is 0.5 m, launch next year

Stereoimaging Mapping to Measurements

Science discipline (group) the technology addresses

- Solid Earth
- Vegetation Structure
- Water Surface and Bathymetry (not so much)

Map to measurement needs

- Limited view through canopy/vegetation (wavelength, other modalities)
- Requires fusion with other sensors
- Availability issues with lighting and visibility

Stereoimaging Needed Technology Advances

Performance

- Current systems produce images not necessarily stereoimagery
- Consistency of measurements/accuracy depends on well conceived conops or design

Visibility

- Vegetation can limit view of ground surface making it difficult to infer structure (paired with another sensor)
- Limited utility on dark side of earth/difficult to work in heavy clouds (paired with another sensor)

Algorithms

- Need better (available) algorithms to reach measurement accuracy with commercial and most govt orbital platforms (account for orbital dynamics, differing resolution, multi views, low contrast etc.)
- Need to understand accuracy for these type measurements

6

Stereoimaging Strengths and Weaknesses

Strengths

- Derived from imagery, probably most commonly available sensed data for STV
- Collections go back decades
- Entry level platforms (quadrotors) allow very high precision/resolution and local collection with minimal resources
- High altitude platforms can cover large areas at relatively high resolution
- Reliable algorithms for generating quality surface maps/dems

Weaknesses

- Visibility constraints (foliage, clouds) limit availability or measurements
- Atmosphere poses significant problems especially for oblique views
- Lighting can be an issue
- Some terrain simply not suitable for measurements (low contrast areas)
- Water measurements are difficult
- Significantly more processing involved to render products than for lidar or even radar

Can address many concerns but shouldn't be considered primary sensor for certain science observations (cryosphere, bathymetry)

Stereoimaging Synergies With other technologies

Combining measurements

- Stereoimaging (the image portion) provides great context for observations with any of the other measurement technologies (lidar, radar)
- In combination, can measure vegetation load
- Most accessible medium for localization—generally easy to localize images in the world (more readily then a point cloud for instance)

Need to co-fly or fly simultaneously?

- Can be coincident with other observations—QUAKES (SAR Fusion) sensor with SAR, makes a more powerful
 observation
- Generally easy to accommodate on a platform

What can other measurements support about this technology?

• Make measurements where visibility constraints are too significant to overcome

Stereoimaging Needed Advancements

Advancements needed to achieve STV

What gaps are there?

- Measurements when visibility conditions aren't favorable to imaging sensors
- Automated/available precision geo-registration of imagery
- Accurate/available algorithms that can handle multiple sampling issues, report measurement
 uncertainty and generate STV products

How do we fill them?

- Pair with another measurement sensor; use other wavelengths; wait until conditions improve
- Provide a database of global landmarks and algorithms needed to geo-register imagery

Stereoimaging Needed Experiments

Existing and proposed

Airborne campaigns

Targets

Data sets

Summary

- Stereoimaging provides wide area coverage at high resolution
- Historical record going back decades
- Need to develop stereoimaging sensors that can provide consistent measurements of known quality
- Work on techniques that can leverage existing capabilities and provide science with reasonable uncertainty estimates (algorithms, geo-registered landmark database)

11