Toward an Observing System Architecture for Surface, Topography and Vegetation

Joseph Green Architecture Lead Jet Propulsion Laboratory California Institute of Technology

Mark Stephen Architecture Co-Lead Goddard Space Flight Center National Aeronautics & Space Administration

NASA Project Life Cycle

PREFORMULATION	FORMULATION		APPROVAL/KDP-C	IMPLEMENTATION			
Pre-phase A Preformulation	Phase A Concept and technology	Phase B Preliminary design and technology completion	NASA sets Agency Baseline Commitments for cost and schedule	Phase C Final design and fabrication	Phase D System assembly, integration, test, launch, and checkout	Phase E Operations and sustainment	Phase F Closeout
	Formulation costs			Development costs		Operations	

Program Pre-Formulation:

Pre-Phase A: Concept Studies

Program Formulation

Phase A: Concept and Technology Development

Phase B: Preliminary Design and Technology Completion

Program Implementation:

Phase C: Final Design and Fabrication

Phase D: System Assembly, Integration and Test, Launch

Phase E: Operations and Sustainment

Phase F: Closeout

STV Decadal Timeline (Approx)

Per-Thread STM

Science Modeling

- How do source terms present themselves?
- How do measurements inform science models and their uncertainty?
- How do we validate observables?
- Instrument Modeling how do we observe, measure and characterize
 - Approaches
 - Timing
 - Completeness over mission life
- <u>Mission Thread Value</u> How do these source term measurement feed understanding via Earth System Models?

This document has been reviewed and determined not to

contain export controlled technical data.

Solid Earth Climate Hydrology Weather Ecosystems Solid Earth **Vegetation Structure Coastal Processes** Cryosphere Hydrology VEGETATION STRUCTURE HYDROLOGY SOLID EARTH CRYOSPHERE COASTAL PROCESSES Tectonics/deposition/ Ecosystem structure · Glacier and ice sheet · Lake and reservoir Storm surge and erosion/climate coupled and function mass gain and loss heights and shallow tsunami inundation precesses processes and impacts bathymetry hazards Carbon accounting · Earthquake, volcano and on seal level change Snow depth and melt Shoreline erosion and Biomass inventory landslide assessment, · Glacier and ice sheet sediment transport impact on water dynamics, monitoring response, mitigation ocean and atmosphere resources Benthic habitat and Biodiversity, habitat and modeling heat and mass structure and response Stream and river flow marine ecosystems · Anthropogenic and exchanges · Flooding and inundation to disturbance Tidal interatction with natural change Atmosphere-ice-ocean modeling mangroves and salt Forest resources detection momentum, heat and marshes management · Wetland processes and mass exchange over the management Shallow water naviga- Wildfire, fuel, risk and polar oceans tion andhazards post-fire recovery Polar ocean circulation

APPI ICATION

TABLE 5-1. Key advantages and disadvantages for lidar, radar and stereo technologies.

Sensor	Key Advantages	Key Disadvantages				
Lidar	 High vertical accuracy Detection of ground through vegetation Vegetation structure Day and night operation 	 Coverage Cloud cover High power Limited detection of ground through very dense vegetation 				
Radar	 Coverage Day and night operation Operates through clouds 	 Complex to infer vegetation structure and underlying topography Changing snow, firn and ice dielectric properties makes height measurements very challenging High power 				
Stereophotogrammetry	 High spatial resolution Low power High maturity High reliability 	 Day only operation Cloud cover Limited detection of ground through dense vegetation 				

12/12/23

Requirements and Prioritization

- Map Into Measurement Needs
 - Mission Thread based breakdown
 - Key Science Data Products and Quality Objectives
- Advance Technology Readiness
- Do Not Forget Ground Development
 - Mission Planning and Scheduling
 - Mission Thread Dependent
 - World mapping vs targeted observations
 - Science Data Processing & Fusion
 - Science Product Archive / Dissemination / Access

Science Product Performance Combines

- Space Segment(s) ie Instruments
- Concept of Operations
- Mission Planning & Ground Processing

Parameter		Aspirational			Threshold		
		Median Need (rounded)	Mos Need	t Stringent Discipline	Median Need (rounded)	Mo: Need	st Stringent Discipline
Coverage Area of Interest	%	90	95	С, Н	55	90	C
Latency	Days	5	0.5	SE	60	1	SE
Duration	Years	9	10	SE, C, A	3	3	SE, V, C, CP
Repeat Frequency	Months	0.1	0.03	SE, A	3	0.2	SE
Horizontal Resolution	m	1	1	SE, C, H, A	20	3	SE
Vertical Accuracy	m	0.2	0.03	SE, C, H	0.5	0.1	С
Vegetation Vertical Resolution	m	1	0.5	H, A	2	0.2	CP
Bathymetry Max Depth	m	25	30	C, CP	10	10	SE, C, CP
Geolocation Accuracy	m	1	1.0	SE, V, H, A	5	3	SE, V
Rate of Change Accuracy	cm/yr	5	1	SE, C, A	35	1	SE

This document has been reviewed and determined not to contain export controlled technical data.

Technology Readiness

- Technology Readiness Levels (TRL) are used to assess the maturity level of a technology. There are nine technology readiness levels. TRL 1 is the lowest and TRL 9 is the highest.
- In general, all technologies must be at least TRL-6 by Mission PDR (KDP-B)
- We have several years to develop lower TRL technologies for a potential 2027 STV Designated Observable mission, but we need to start soon and show a path to completion before
- For earlier opportunities such as Earth Venture, we need to use more mature (existing technologies or those already in development)

More Detailed TRL Definitions: <u>https://www.nasa.gov/wp-content/uploads/2017/12/458490main_trl_definitions.pdf</u>

6

Earlier Opportunities for STV Data

Upcoming NASA Earth Venture Opportunities

EVC-2 Q4 of FY24 (Continuity)

EVI-7 Q1 of FY25 (Instrument)

EVM-4 Q4 of FY25 (Mission)

EVS-5 Q4 of FY26 (Sub-orbital)

Surface Topography and Vegetation Study Team Meeting

Next Steps

- Advance maturity of STV Science Needs
- Advance maturity of observational approaches
- Look for additional opportunities
 - How can STV measurements also support aspects of PBL?
- Look at the full NASA and Commercial sensor architecture

Mind the Gap

This document has been reviewed and determined not to contain export controlled technical data

